Meteorology and air pollution experiment at the Black Sea coastal site Ahtopol - 2017

Author(s):  
Ekaterina Batchvarova ◽  
Claudia Calidonna ◽  
Maria Kolarova ◽  
Ivano Ammoscato ◽  
Damyan Barantiev ◽  
...  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
А. V. Varenik ◽  
D. V. Kalinskaya ◽  
М. А. Myslina ◽  
◽  
◽  
...  

Purpose. One of the most pressing problems of large cities is air pollution resulting from presence of various large and fine particles in the air. These micro-particles can be transported by the air currents over considerable distances, as well as coagulate various substances also present in the atmosphere. The purpose of the work is to study the content of particulate matter of 2.5 and 10 microns (PM2.5 and PM10) in the atmosphere of Sevastopol, as well as the processes affecting their concentration. Methods and Results. During the period from February to June, 2020, the scientists of Marine Hydrophysical Institute (MHI), RAS measured mass concentration of PM2.5 and PM10 in Sevastopol using the “Atmas” dust analyzer. A total of 180 measurements of the micro-particle concentrations in the air of Sevastopol were done, and 60 values of the PM2.5 and PM10 daily average concentrations were obtained. To analyze the preferred aerosol type for the dates with high content of suspended particles in the air, the CALIPSO satellite data were used. It is shown that the smoke recorded in the Sevastopol atmosphere on 19.02.2020 could lead to increase of the PM10 particles concentration. A day before the increased concentrations of suspended particles were revealed in the Sevastopol atmospheric air, the CALYPSO satellite data on aerosol typing over the Black Sea had shown predominance of the smoke aerosol in the atmosphere over the region under study. Conclusions. The results of the investigation shows that in the atmosphere of Sevastopol, the cases when the PM2.5 and PM10 particles contents exceeded the maximum permissible daily average concentration by up to 3.4 times were detected. It was found that the main cause of air pollution with micro-particles in Sevastopol was the transfer both of air masses from the deserts in the African continent and Asia and the burning biomass aerosol (smoke). Air pollution with the PM10 particles caused by the local source, namely soil exсavation in immediate proximity to the air sampling point, was less significant.


Introduction. Industrial development and increasing traffic emissions cause air quality problems. The most accurate for air pollution analysis are ground-based data; however, it is very limited in space. Modelling could solve this problem, but huge amount of input information and limits of computational power make it difficult to analyze big territories with high resolution. Sentinel-5P satellite with TROPOMI instrument nowadays gives opportunities to monitor the air pollution with good spatial resolution. The purpose of the study is to analyse nitrogen dioxide, sulfur dioxide, carbon monoxide and formaldehyde spatial and temporal distribution over Ukraine and Black Sea and Azov Sea. Methods and raw data. There were selected Sentinel-5P data of NO2, SO2, CO and HCHO for the period from first data release in 2018 to June, 2019. Data processing implemented in Google Earth Engine using JavaScript programming in The Earth Engine Code Editor. Results and discussion. Joint analysis of NO2 tropospheric, stratospheric and total columns showed the prevailing of tropospheric NO2 content and therefore crucial role of anthropogenic emission sources. While background NO2 total column varies from 4·10-5 mol/m2 to 7·10-5 mol/m2, in the most polluted cities content exceeds 1·10-4 mol/m2. The highest values are observed in Kyiv and industrial cities in Donbas region. Some of them are situated in the area of Joint Forces Operation outside the demarcation line. Sentinel-5P data catch the large emissions from the local industries; however, no official confirmations about production volume are available. NO2 dispersion increase during winter with the values range from 1·10-5 mol/m2 to 3·10-5 mol/m2 over clean territories and 8·10-5 mol/m2 to 1·10-3 mol/m2 in industrial cities. Seasonal maximal observed during warm period in unpolluted regions and during winter in the cities. Cold seasonal NO2 content outbreaks in the mountains are the result of its transportation from industrial cities. Spatial distribution of CO total column over Ukraine is rather homogeneous because of CO lifetime in the atmosphere up to several months. It could be transported on the long distances, which makes identification of polluted regions difficult. However, several cities with maximal average values of more than 0.037mol/m2 prove the existence of extreme anthropogenic emissions. Overall background CO contents vary within 0.033–0.035 mol/m2. Coastal regions of the Black Sea and Azov Sea are more polluted by CO compared to the mainland, which could be the consequences of ships emissions. Temporal analysis of CO total column found 4 powerful emissions: three of them are anthropogenic in industrial cities and one is natural, connected with forest fires in Belarus and northern part of Rivne region in April, 2019. There is one location with huge SO2 emission in Ukraine, observed in Novyi Svit (Donetsk region) outside the demarcation line of Joint Forces Operation, which corresponds to Starobeshivska thermal power station. In general, higher SO2 contents are observed over Donetsk, Zaporizhia and Dnipro regions; also over the Black Sea and Azov Sea. For HCHO spatial distribution minimal values are typical for the Carpathians. It is well seen that SO2 content are higher in the Southern part of Ukraine than in the Western part. The research finds regularities in spatial distribution of pollutants over the sea area. During cold season higher concentrations could be observed over the main merchant vessels tracks in the Black Sea. In summer months, which coincide with the main tourist season, most polluted are shoreline area because of emissions from cabotage and fishing vessels. The study updates information about most polluted cities in Ukraine, especially in the regions with absence of ground-based measurements. Some of them are mentioned for the first time among other research. Air quality analysis in many industrial cities significantly changed over the last two years. It shows difficulties of long-term pollution forecast and scenarios based on historical data and observed trends. It is recommended to use ensemble modelling for this purpose with scenarios of emission reduction, increasing and temporal stability. Sentinel-5P data confirm the conclusions of previous research about dependence of NO2 annual cycle and seasonality phases shift from the level of anthropogenic load. Prospects for further research. Sentinel-5P spatial resolution expands the horizons for air pollution research. The most relevant are monitoring of short-term anthropogenic and natural emissions, pollutants’ seasonality changes in different macroclimatic conditions, research of ships emissions in Black Sea and Azov Sea, combination of satellite air pollution data with methods of “artificial intelligence” for individual emissions detection.


2020 ◽  
Vol 8 (8) ◽  
pp. 550
Author(s):  
Alina Beatrice Raileanu ◽  
Florin Onea ◽  
Eugen Rusu

Considering the current concerns regarding the level of air pollution from the Black Sea area, the aim of the present work is to establish whether a cold ironing project that involves the use of the wind resources from the port of Constanta (Romania) could become a reality. The regional and local wind resources measured at a height of 100 m above sea level were assessed by taking into account 20 years (2000–2019) of ERA5 wind data. The wind speed significantly increases as we move towards the offshore areas, with the wind Class C7 reporting a maximum of 41%. By combining the annual electricity production with the emissions associated with the port activities, it was possible to show that at least 385 turbines (each rated at eight MW) will be required to cover the electricity demand for this port. The present study has found it difficult to implement such a project based only on the available wind resources and has identified that more likely a mixed project that involves some other resources will be more appropriate. Finally, it is worth mentioning that the future of the ship industry is becoming greener and definitely, a wind project located near Constanta harbour will represent a viable solution in this direction.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
А. V. Varenik ◽  
D. V. Kalinskaya ◽  
М. А. Myslina ◽  
◽  
◽  
...  

Purpose. One of the most pressing problems of large cities is air pollution resulting from presence of various large and fine particles in the air. These micro-particles can be transported by the air currents over considerable distances, as well as coagulate various substances also present in the atmosphere. The purpose of the work is to study the content of particulate matter of 2.5 and 10 microns (PM2.5 and PM10) in the atmosphere of Sevastopol, as well as the processes affecting their concentration. Methods and Results. During the period from February to June, 2020, the scientists of Marine Hydrophysical Institute (MHI), RAS measured mass concentration of PM2.5 and PM10 in Sevastopol using the “Atmas” dust analyzer. A total of 180 measurements of the micro-particle concentrations in the air of Sevastopol were done, and 60 values of the PM2.5 and PM10 daily average concentrations were obtained. To analyze the preferred aerosol type for the dates with high content of suspended particles in the air, the CALIPSO satellite data were used. It is shown that the smoke recorded in the Sevastopol atmosphere on 19.02.2020 could lead to increase of the PM10 particles concentration. A day before the increased concentrations of suspended particles were revealed in the Sevastopol atmospheric air, the CALYPSO satellite data on aerosol typing over the Black Sea had shown predominance of the smoke aerosol in the atmosphere over the region under study. Conclusions. The results of the investigation show that in the atmosphere of Sevastopol, the cases when the PM2.5 and PM10 particles contents exceeded the maximum permissible daily average concentration by up to 3.4 times were detected. It was found that the main cause of air pollution with micro-particles in Sevastopol was the transfer both of the air masses from the deserts in the African continent and Asia, and the burning biomass aerosol (smoke). Air pollution with the PM10 particles caused by the local source, namely soil exсavation in immediate proximity to the air sampling point, was less significant.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-445-C2-448
Author(s):  
D. Barb ◽  
L. Diamandescu ◽  
M. Morariu ◽  
I. I. Georgescu

Author(s):  
Eleonora P. Radionova

The associations and ecological conditions of the existence of modern diatoms of the North-West (Pridneprovsky), Prikerchensky and Eastern regions of the subtidal zone of the Black Sea are considered. Based on the unity of the composition of the Present and Sarmatian-Meotian diatom flora, an attempt has been made to model some of the ecological c situation of the Late Miocene Euxinian basin.


Sign in / Sign up

Export Citation Format

Share Document