scholarly journals Every entangled state provides an advantage in classical communication

2019 ◽  
Vol 60 (7) ◽  
pp. 072201 ◽  
Author(s):  
S. Bäuml ◽  
A. Winter ◽  
D. Yang
2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


2010 ◽  
Vol 08 (07) ◽  
pp. 1199-1206 ◽  
Author(s):  
PEI-MIN LU ◽  
YAN XIA ◽  
JIE SONG ◽  
HE-SHAN SONG

We demonstrate a linear optical protocol to generate W state in terms of optical elements within a network. The proposed setup involves simple linear optical elements, N-photon polarization entangled state, and conventional photon detectors that only distinguish the vacuum and nonvacuum Fock number states. We show that with local operations, single-photon measurement, and one way classical communication, the protocol can be successfully realized with a certain probability.


2015 ◽  
Vol 112 (46) ◽  
pp. 14202-14205 ◽  
Author(s):  
Thomas Herbst ◽  
Thomas Scheidl ◽  
Matthias Fink ◽  
Johannes Handsteiner ◽  
Bernhard Wittmann ◽  
...  

As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.


2002 ◽  
Vol 2 (5) ◽  
pp. 348-354
Author(s):  
E. Jan\'e

We find the necessary and sufficient condition under which two two-qubit mixed states can be purified into a pure maximally entangled state by local operations and classical communication. The optimal protocol for such transformation is obtained. This result leads to a necessary and sufficient condition for the exact purification of $n$ copies of a two-qubit state.


2011 ◽  
Vol 09 (01) ◽  
pp. 539-546 ◽  
Author(s):  
LIAN-FANG HAN ◽  
HAO YUAN

We propose two protocols for remotely preparing a two-qubit entangled state, where the quantum channels take the form of one-dimensional four-qubit cluster and cluster-class states, respectively. The total success probability and classical communication cost are also calculated.


2010 ◽  
Vol 10 (11&12) ◽  
pp. 901-910
Author(s):  
Karol Horodecki ◽  
Michal Horodecki ◽  
Pawel Horodecki

We provide operational definition of asymmetry of entanglement: An entangled state contains asymmetric entanglement if its subsystems can not be exchanged (swapped) by means of local operations and classical communication. We show that in general states have asymmetric entanglement. This allows to construct nonsymmetric measure of entanglement, and a parameter that reports asymmetry of entanglement contents of quantum state. We propose asymptotic measure of asymmetry of entanglement, and show that states for which it is nonzero, contain necessarily bound entanglement.


2008 ◽  
Vol 06 (06) ◽  
pp. 1183-1193 ◽  
Author(s):  
KUI HOU ◽  
JING WANG ◽  
SHOU-HUA SHI

By means of the method of the positive operator-valued measure, two schemes to remotely prepare an arbitrary two-particle entangled state were presented. The first scheme uses a one-dimensional four-particle non-maximally entangled cluster state while the second one uses two partially entangled two-particle states as the quantum channel. For both schemes, if Alice performs two-particle projective measurements and Bob adopts positive operator-valued measure, the remote state preparation can be successfully realized with certain probability. The success probability of the remote state preparation and classical communication cost are calculated. It is shown that Bob can obtain the unknown state with probability 1/4 for maximally entangled state. However, for four kinds of special states, the success probability of preparation can be enhanced to unity.


2008 ◽  
Vol 06 (02) ◽  
pp. 393-402 ◽  
Author(s):  
RAMEEZ-UL- ISLAM ◽  
MANZOOR IKRAM ◽  
ASHFAQ H. KHOSA ◽  
FARHAN SAIF

A scheme for remote preparation of field (atomic) states is proposed. Protocol execution requires cavity QED based atom-field interactions successively supplemented with Ramsey interferometry. The state to be remotely prepared at the receiver's end is acquired by deterministically manipulating the sender's component of the pre-shared entangled state. In the case of field entanglement, it is carried out with the help of an atom that passes through the sender's cavity and then traverses a classical external field for specified times prior to detection. However, for atomic entangled states, only interactions with the classical field suffice to complete the task. The scheme guarantees good success probability with high fidelity and requires one bit of classical communication.


Sign in / Sign up

Export Citation Format

Share Document