scholarly journals Teleportation of entanglement over 143 km

2015 ◽  
Vol 112 (46) ◽  
pp. 14202-14205 ◽  
Author(s):  
Thomas Herbst ◽  
Thomas Scheidl ◽  
Matthias Fink ◽  
Johannes Handsteiner ◽  
Bernhard Wittmann ◽  
...  

As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

2013 ◽  
Vol 302 ◽  
pp. 607-611
Author(s):  
Zhen Zhu Zhou ◽  
Wei He ◽  
Chun Dan Zhu ◽  
Ying Wang

We discuss a long-distance quantum communication system based on entangled photon pairs, which apply entanglement as its fundamental resource. For distances longer than the coherence length of a counterpart noisy quantum channel, the fidelity of transmission is ordinarily so low that standard purification processes are not applicable. The quantum repeater stretches the length of the entangled photon pairs. And the high fidelity entanglement of photons between sender and receiver is obtained by entanglement purification and entanglement swapping. We compare the nested repeater with the common repeater and show that it outperforms the latter, which is built an EPR pair in less time.


Author(s):  
Ryan C. Parker ◽  
Jaewoo Joo ◽  
Timothy P. Spiller

We propose the use of hybrid entanglement in an entanglement swapping protocol, as means of distributing a Bell state with high fidelity to two parties. The hybrid entanglement used in this work is described as a discrete variable (Fock state) and a continuous variable (cat state super- position) entangled state. We model equal and unequal levels of photonic loss between the two propagating continuous variable modes, before detecting these states via a projective vacuum-one-photon measurement, and the other mode via balanced homodyne detection. We investigate homodyne measurement imperfections, and the associated success probability of the measurement schemes chosen in this protocol. We show that our entanglement swapping scheme is resilient to low levels of photonic losses, as well as low levels of averaged unequal losses between the two propagating modes, and show an improvement in this loss resilience over other hybrid entanglement schemes using coherent state superpositions as the propagating modes. Finally, we conclude that our protocol is suitable for potential quantum networking applications which require two nodes to share entanglement separated over a distance of 5 -- 10   km , when used with a suitable entanglement purification scheme.


2016 ◽  
Vol 16 (11&12) ◽  
pp. 982-990
Author(s):  
Liang Qiu ◽  
Zhi Liu ◽  
Xin Wang

Two qubits in a pure entangled state passing through and interacting with amplitude damping noises will cause the decay of entanglement. Entanglement swapping combined with environment measurement is proposed to purify entanglement of the two-qubit state. Some initial states can be purified into the maximally entangled ones by just using the protocol for one time, in contrast to iteratively using the protocol given in Phys. Rev. A 89, 014303 (2014).


2021 ◽  
pp. 2150073
Author(s):  
Wanbin Zhang ◽  
Baosheng Li

A total of seven qubits are in a maximally entangled state. Using such an entangled state as quantum channel is based on the construction requirements of quantum long-distance communication [Pan et al., Nature 488, 185 (2012)]. Multi-party quantum channel (QC) should be studied. We put forward three deterministic bidirectional quantum controlled teleportation (BQCT) schemes. To be specific, BQCT can be realized between any two parties in a deterministic manner with another as the control. Alternatively, the BQCT capacity of such state in the given qubit distribution is thus essentially revealed by virtue of the schemes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hua-Lei Yin ◽  
Zeng-Bing Chen

Abstract Large-scale quantum communication networks are still a huge challenge due to the rate-distance limit of quantum key distribution (QKD). Recently, twin-field (TF) QKD has been proposed to overcome this limit. Here, we prove that coherent-state-based TF-QKD is a time-reversed entanglement protocol, where the entanglement generation is realized with entanglement swapping operation via an entangled coherent state measurement. We propose a coherent-state-based TF-QKD with optimal secret key rate under symmetric and asymmetric channels by using coherent state and cat state coding. Furthermore, we show that our protocol can be converted to all recent coherent-state-based TF-QKD protocols by using our security proof. By using the entanglement purification with two-way classical communication, we improve the transmission distance of all coherent-state-based TF-QKD protocols.


2009 ◽  
Vol 80 (1) ◽  
Author(s):  
Mikołaj Czechlewski ◽  
Andrzej Grudka ◽  
Satoshi Ishizaka ◽  
Antoni Wójcik

2010 ◽  
Vol 08 (07) ◽  
pp. 1141-1151 ◽  
Author(s):  
XI-HAN LI ◽  
XIAO-JIAO DUAN ◽  
FU-GUO DENG ◽  
HONG-YU ZHOU

Quantum entanglement is an important element of quantum information processing. Sharing entangled quantum states between two remote parties is a precondition of most quantum communication schemes. We will show that the protocol proposed by Yamamoto et al. (Phys. Rev. Lett.95 (2005) 040503) for transmitting single quantum qubit against collective noise with linear optics is also suitable for distributing the components of entanglements with some modifications. An additional qubit is introduced to reduce the effect of collective noise, and the receiver can take advantage of the time discrimination and the measurement results of the assistant qubit to reconstruct a pure entanglement with the sender. Although the scheme succeeds probabilistically, the fidelity of the entangled state is almost unity in principle. The resource used in our protocol to get a pure entangled state is finite, which establishes entanglement more easily in practice than quantum entanglement purification. Also, we discuss its application in quantum key distribution over a collective channel in detail.


Sign in / Sign up

Export Citation Format

Share Document