Verification of complex acoustic mismatch model in sub-THz regime

2019 ◽  
Vol 114 (15) ◽  
pp. 151106 ◽  
Author(s):  
Fan Jun Wei ◽  
Richard A. Mole ◽  
Sunil K. Karna ◽  
Jin-Wei Shi ◽  
Jinn-Kong Sheu ◽  
...  
Keyword(s):  
2021 ◽  
Vol 63 (7) ◽  
pp. 982
Author(s):  
Б. Лю ◽  
В.И. Хвесюк ◽  
А.А. Баринов

In this work, we have formulated and solved the problem of determining the Kapitza conductance across the interface between two solids, taking into account the interface roughness. We use a modified acoustic mismatch model (AMM). The difference from the classic model is that the dispersion properties of acoustic waves are considered. A significant advantage of this model is that the theoretical prediction agrees well with experimental data over a wide temperature range: from 30K to more than 300K. Finally, a theoretical method with the statistical distribution of roughness profiles is used to determine the energy transmission coefficient across the interface.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jennifer N Phillips ◽  
Madhusudan Katti

Abstract Many animals learn to produce acoustic signals that are used to attract mates and defend territories. The structure of these signals can be influenced by external features of the environment, including the anthropogenic soundscape. In many sedentary species, habitat features and soundscape appears to influence the cultural evolution of songs, often with tradeoffs for better transmission over sexually selected song structure. However, none have investigated whether noise on the wintering grounds affects song structure, which for long-distance migrants may result in an acoustic ‘mismatch’ when returning to a breeding ground. This study investigates urban noise effects on song structure in a long-distance migrant, Zonotrichia leucophrys gambelii, on the wintering grounds in the Fresno Clovis Metropolitan Area and in outlying non-urban areas. Songs and background noise levels were recorded concurrently, and song measurements of frequency and duration were examined differences across noise levels and habitats . We found that the buzz and trill decrease in bandwidth in the presence of noise. The length of the whistle and buzz portion of the song also tends to decreases with noise in urban habitats. This trend toward short, pure tones in noisy areas may transmit better in noisy urban winter habitats, but may not be adaptive on quieter breeding grounds. We suggest that future studies should consider whether winter auditory feedback and song learning environments have consequences for song crystallization and breeding success for long-distance migrants.


1994 ◽  
Author(s):  
Alex D. Semenov ◽  
A. V. Sergeev ◽  
Pavel B. Kouminov ◽  
Eugeni M. Gershenzon ◽  
M. A. Heusinger ◽  
...  

Author(s):  
D. P. Sellan ◽  
C. H. Amon

The phonon Boltzmann transport equation model is used to evaluate the reduction of out-of-plane thermal conductivity and subsequent increase in thermoelectric figure of merit when an angular interface is patterned between a germanium thin-film and silicon substrate. According to the acoustic mismatch model, the angular structure reduces the out-of-plane thermal conductivity by spatially redistributing phonons traveling in the out-of-plane direction. Simulation results demonstrate a 43% reduction in out-of-plane thermal conductivity when operating in the fully ballistic regime. This decrease in phononic thermal conductivity would result in an increase of intrinsic thermoelectric efficiency by a factor of 1.75.


Author(s):  
Ravi Prasher ◽  
Patrick Phelan

There are two types of thermal contact resistance at the interface of two solids. One of them is due to the constriction of heat flow lines at the interface, commonly known as thermal contact resistance. The other type of constriction resistance is microscopic in nature. If the characteristic dimension of the constriction becomes comparable to the mean free path of the heat carriers then there is a ballistic component to the constriction resistance. For different materials on the two sides, thermal boundary resistance due to acoustic mismatch becomes important. In this paper a unified model is developed which accounts for both microscopic and macroscopic contact resistances.


1976 ◽  
Vol 54 (17) ◽  
pp. 1749-1771 ◽  
Author(s):  
J. D. N. Cheeke ◽  
H. Ettinger ◽  
B. Hebral

A detailed analysis is given of the acoustic mismatch formulation first given by Little for the thermal contact resistance between solids for the case of phonon transport in a Debye model. Extrema in the heat transfer coefficients as a function of the refractive index of the interface are shown to be due to either impedance matching conditions or to the presence of the critical cone. Detailed numerical tables are presented which permit rapid evaluation of the heat transfer coefficient to an accuracy of 5% or better.


1979 ◽  
Vol 34 (1-2) ◽  
pp. 17-31
Author(s):  
M. W. P. Strandberg ◽  
L. R. Fox

Sign in / Sign up

Export Citation Format

Share Document