Analysis of heat transfer between solids at low temperatures

1976 ◽  
Vol 54 (17) ◽  
pp. 1749-1771 ◽  
Author(s):  
J. D. N. Cheeke ◽  
H. Ettinger ◽  
B. Hebral

A detailed analysis is given of the acoustic mismatch formulation first given by Little for the thermal contact resistance between solids for the case of phonon transport in a Debye model. Extrema in the heat transfer coefficients as a function of the refractive index of the interface are shown to be due to either impedance matching conditions or to the presence of the critical cone. Detailed numerical tables are presented which permit rapid evaluation of the heat transfer coefficient to an accuracy of 5% or better.

Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


Author(s):  
G P Voller ◽  
M Tirovic ◽  
R Morris ◽  
P Gibbens

The aim of this investigation was to study automotive disc brake cooling characteristics experimentally using a specially developed spin rig and numerically using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) have been analysed along with the design features of the brake assembly and their interfaces. The spin rig proved to be very valuable equipment; experiments enabled the determination of the thermal contact resistance between the disc and wheel carrier. The analyses demonstrated the sensitivity of this mode of heat transfer to clamping pressure. For convective cooling, heat transfer coefficients were measured and very similar results were obtained from spin rig experiments and CFD analyses. The nature of radiative heat dissipation implies substantial e ects at high temperatures. The results indicate substantial change of emissivity throughout the brake application. The influence of brake cooling parameters on the disc temperature has been investigated by FE modelling of a long drag brake application. The thermal power dissipated during the drag brake application has been analysed to reveal the contribution of each mode of heat transfer.


1999 ◽  
Author(s):  
Kal R. Sharma

Abstract Experimentally measured values for the minimum fluidization velocities and time averaged local surface heat transfer coefficients are provided for 16 different cases of fluidizing conditions for gas-solid dense fluidized beds. Semi-empirical Correlations for the minimum fluidization velocity and the heat transfer coefficient at minimum fluidization velocities are provided. The implications of the Peclet number dependence in terms of diffusion and convection is discussed.


Author(s):  
Sunil Mehendale

In HVACR equipment, internally enhanced round tube (microfin) designs such as axial, cross-grooved, helical, and herringbone are commonly used to enhance the boiling and condensing performance of evaporators, condensers, and heat pumps. Typically, such tubes are mechanically expanded by a mandrel into a fin pack to create an interference fit between the tube outside surface and the fin collar to minimize the thermal contact resistance between tube and fin. However, during this expansion process, the internal enhancements undergo varying amounts of deformation, which degrades the in-tube thermal performance. Extensive data on condensing heat transfer coefficients in microfin tubes have been reported in the open literature. However, researchers have seldom used expanded tubes to acquire and report such data. Hence, it is always questionable to use such pristine tube data for designing heat exchangers and HVACR systems. Furthermore, the HVACR industry has been experiencing steeply rising copper costs, and this trend is expected to continue in coming years. So, many equipment manufacturers and suppliers are actively converting tubes from copper to aluminum. However, because of appreciable differences between the material properties of aluminum and copper, as well as other manufacturing variables, such as mandrel dimensions, lubricant used, etc., tube expansion typically deforms aluminum fins more than copper fins. Based on an analysis of the surface area changes arising from tube expansion, and an assessment of the best extant in-tube condensation heat transfer correlations, this work proposes a method of estimating the impact of tube expansion on in-tube condensation heat transfer. The analysis leads to certain interesting and useful findings correlating fin geometry and in-tube condensation thermal resistance. This method can then be applied to more realistically design HVACR heat exchangers and systems.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


1980 ◽  
Vol 102 (3) ◽  
pp. 420-425 ◽  
Author(s):  
P. Razelos ◽  
K. Imre

Optimum dimensions of circular fins of trapezoidal profile with variable thermal conductivity and heat transfer coefficients are obtained. Linear variation of the thermal conductivity is considered of the form k = k0(1 + εT/T0), and the heat transfer coefficient is assumed to vary according to a power law with distance from the bore, expressed as h = K[(r − r0)/(r0 − re)]m. The results for m = 0, 0.8, 2.0, and −0.4 ≤ ε ≤ 0.4, have been expressed by suitable nondimensional parameters which are presented graphically. It is shown that considering the thermal conductivity as constant, the optimum base thickness and volume of the fin are inversely proportional to the thermal conductivity of the material of the fin, while the optimum length and effectiveness are independent of the properties of the material used.


1965 ◽  
Vol 13 (2) ◽  
pp. 153 ◽  
Author(s):  
GI Pearman

An account is given of techniques and methods used in measurement of convective heat transfer from leaves of the succulent Carpobrotus. Heat transfer was studied under still air conditions and in wind (in a specially constructed wind-tunnel) up to velocities of 300 cm sec-1. A correlation was demonstrated between experimentally obtained values of heat transfer coefficients and theoretical values calculated from empirical formulae. At wind velocities of 300 cm sec-1 the heat transfer coefficient for Carpobrotus was increased to seven times its value still air.


Author(s):  
Michael Gritsch ◽  
Stefan Baldauf ◽  
Moritz Martiny ◽  
Achmed Schulz ◽  
Sigmar Wittig

The present paper reports on the use of the superposition approach in high density ratio film cooling flows. It arises from the linearity and homogeneity of the simplified boundary layer differential equations. However, it is widely assumed that the linearity does not hold for variable property flows. Therefore, theoretical considerations and numerical calculations will demonstrate the linearity of the heat transfer coefficient with the dimensionless coolant temperature θ as long as identical flow conditions are applied. This makes it necessary to perform at least two experiments at different θ but with the coolant to main flow temperature ratio kept unchanged. A comprehensive set of experiments is presented to demonstrate the capability of the superposition approach for determining heat transfer coefficients for different film cooling geometries. These comprise coolant injection from two dimensional tangential slots, single holes, and rows of cylindrical holes. Particularly, two dimensional local distributions of the heat transfer coefficient will be addressed.


Author(s):  
Michael Ngadi ◽  
Julian N. Ikediala

Average heat transfer coefficients of chicken drum shaped bodies were estimated using aluminum chicken drum shaped models. Three model drum sizes namely small, medium and large, and three frying oil viscosities for three temperature differences were used. Estimated heat transfer coefficients were in the range from 67 to 163 W/m²K. Increasing temperature difference increased heat transfer coefficient. Conversely, increasing the size of the chicken drum model bodies and oil viscosities decreased the heat transfer coefficient. A heat transfer correlation equation between average Nu and Ra was derived. The methodology developed in this study could be used to estimate heat transfer coefficients of chicken drum during deep-fat frying.


1995 ◽  
Vol 23 (3) ◽  
pp. 203-211 ◽  
Author(s):  
P. J. Erens ◽  
A. A. Dreyer

This article describes a simple, low-cost experiment which could be used as a good educational example for students, combining the effects of radiation, natural convection, forced convection and condensation into one experiment. Many correlations are available for the calculation of the heat transfer from single, slender bodies (or tubes) immersed in a moving fluid. Even for a simple cylindrical tube the predicted heat transfer coefficients differ significantly from correlation to correlation. For more complex tube geometries fewer correlations could be found in the literature. The correlation by Gnielinski [1] appeared the most favourable since this single correlation is valid for many tube geometries (not just for cylindrical tubes). A simple experimental technique is described to measure the heat transfer coefficient on the outside of various tubular profiles in a fluid stream. This technique was then used to evaluate heat transfer coefficients on six different tubes, ranging from a circular cylinder to a complex T-shaped tube. The experimental data for all six tubes showed very good agreement with the correlation of Gnielinski.


Sign in / Sign up

Export Citation Format

Share Document