scholarly journals A quantum open system model of molecular battery charged by excitons

2019 ◽  
Vol 150 (21) ◽  
pp. 214110 ◽  
Author(s):  
Robert Alicki
2020 ◽  
Author(s):  
Peter D. Kvam ◽  
Jerome R Busemeyer ◽  
Timothy Joseph Pleskac

Contemporary theories of choice posit that decision making is a constructive process in which a decision maker uses information about the choice options to generate support for various decisions and judgments, then uses these decisions and judgments to reduce their uncertainty about their own preferences. Here we examine how these constructive processes unfold by tracking dynamic changes in preference strength. Across two experiments, we observed that mean preference strength oscillated over time and found that eliciting a choice strongly affected the pattern of oscillation. Preferences following choices oscillated between being stronger than those without prior choice (bolstering) and being weaker than those without choice (suppression). An open system model, merging epistemic uncertainty about how a person reacts to options and ontic uncertainty about how their preference is affected by choice, accounts for the oscillations resulting in both bolstering and suppression effects.


Geology ◽  
1991 ◽  
Vol 19 (12) ◽  
pp. 1185 ◽  
Author(s):  
Gawen R.T. Jenkin ◽  
Claire Linklater ◽  
Anthony E. Fallick

1998 ◽  
Vol 62A (1) ◽  
pp. 569-570
Author(s):  
T. Hanyu
Keyword(s):  

2005 ◽  
Vol 12 (01) ◽  
pp. 65-80 ◽  
Author(s):  
Walter T. Strunz

We determine the dynamics of the total state of a system and environment for an open system model, at finite temperature. Based on a partial Husimi representation, our framework describes the full dynamics very efficiently through equations in the Hilbert space of the open system only. We briefly review the zero-temperature case and present the corresponding new finite temperature theory, within the usual Born-Markov approximation. As we will show, from a reduced point of view, our approach amounts to the derivation of a stochastic Schrödinger equation description of the dynamics. We show how the reduced density operator evolves according to the expected (finite temperature) master equation of Lindblad form.


2016 ◽  
Vol 16 (7&8) ◽  
pp. 597-614
Author(s):  
Tiantian Ma ◽  
Jun Jing ◽  
Yi Guo ◽  
Ting Yu

We study a hybrid quantum open system consisting of two interacting subsystems formed by one two-level atom (qubit) and one three-level atom (qutrit). The quantum open system is coupled to an external environment (cavity) via the qubit-cavity interaction. It is found that the feedback control on different parts of the system (qubit or qutrit) gives dramatically different asymptotical behaviors of the open system dynamics. We show that the local feedback control mechanism acting on the qutrit subsystem is superior than that on the qubit in the sense of improving the entanglement. Particularly, the qutrit-control scheme may result in an entangled steady state, depending on the initial state.


2017 ◽  
Vol 24 (04) ◽  
pp. 1740012 ◽  
Author(s):  
Chahan M. Kropf ◽  
Vyacheslav N. Shatokhin ◽  
Andreas Buchleitner

We show how random unitary dynamics arise from the coupling of an open quantum system to a static environment. Subsequently, we derive a master equation for the reduced system random unitary dynamics and study three specific cases: commuting system and interaction Hamiltonians, the short-time limit, and the Markov approximation.


Sign in / Sign up

Export Citation Format

Share Document