scholarly journals Fabrication and optimization of immobilized bentonite and TiO2 photocatalyst in unilayer and bilayer system for the photocatalytic adsorptive removal of methylene blue dye under UV light

2019 ◽  
Author(s):  
M. Z. Mahmood ◽  
S. Ismail
2021 ◽  
pp. 50655
Author(s):  
Aafia Tehrim ◽  
Min Dai ◽  
Xiange Wu ◽  
Malik Muhammad Umair ◽  
Imran Ali ◽  
...  

2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 19008-19019 ◽  
Author(s):  
Abdelazeem S. Eltaweil ◽  
Eman M. Abd El-Monaem ◽  
Gehan M. El-Subruiti ◽  
Mona M. Abd El-Latif ◽  
Ahmed M. Omer

This study provides a novel composite as an efficient adsorbent of cationic methylene blue dye.


Author(s):  
Hassan Wafi Garba ◽  
Abubakar Garba Ashiru ◽  
Rooshan Watanpal ◽  
Mohammed Bello ◽  
Kasimu Abubakar ◽  
...  

Abstract—A novel copper(II) complex nanoparticles catalyst was synthesized via precipitation and calcination. The catalyst was applied for the degradation of methylene blue under UV light irradiation. The catalyst was characterized for its physicochemical and structural properties by XRD, SEM, TEM and FT-IR spectroscopic techniques. XRD studies revealed that the particles were monoclinic single phase crystalline structure, the morphology of the nanostructure was confirmed by SEM while the TEM studies revealed that the particles were FCC. FTIR spectra showed the presence of diverse vibrational functional groups. Photolysis of the methylene blue dye indicates no degradation after 1 hour reaction, while the addition of the copper(II) complex nanoparticles catalyst resulted in the decolouration of the dye by ~94%. The efficiency of the catalyst was attributed to the nanoparticle’s morphology.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. M. Mohamed ◽  
E. S. Aazam

CeO2-SiO2nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2without impurities and amorphous silica. The transmission electron microscopy (TEM) images revealed that the particle size of CeO2-SiO2nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.


2020 ◽  
Vol 52 (4) ◽  
pp. 415-432
Author(s):  
Faezeh Parast ◽  
Mehdi Montazeri-Pour ◽  
Masoud Rajabi ◽  
Fatemeh Bavarsiha

In the present research, Fe3O4/TiO2 magnetic photo-catalytic nanocomposites with a core/shell structure were successfully synthesized using two techniques of ultrasonic and St?ber. In this way, iron oxide (II, III) nanoparticles as soft magnetic cores of this composite were prepared by utilizing a chemical method assisted by ultrasound with a Fe+3/Fe+2 molar ratio of 1.5 under the nitrogen atmosphere. Thereafter, titanium oxide coating was performed on Fe3O4 nanoparticles by using tetrabutyl orthotitanate (TBOT) and titanium isopropoxide (TTIP) precursors. The resultant nanostructures were characterized by means of X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, energy dispersive X-ray (EDX) analysis, vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Through findings obtained from TEM examinations, the formation of core/shell nanostructure was confirmed in the prepared Fe3O4/TiO2 composites. Analysis of magnetic properties revealed that titanium oxide coating on iron oxide nanoparticles reduces saturation magnetization (Ms). The values of saturation magnetization for Fe3O4 powder and Fe3O4/TiO2 nanocomposite powders achieved via ultrasonic and St?ber methods were 60, 23 and 9 emu/g, respectively. Photo-catalytic properties of Fe3O4/TiO2 nanostructures were evaluated by the use of methylene blue dye under UV light. Results indicated that Fe3O4/TiO2 composite obtained by the St?ber method has a better photo-catalytic property as well as a decreased but acceptable magnetic separation. Degradation of methylene blue dye in the presence of photo-catalytic powder prepared by ultrasonic and St?ber procedures was 61 and 69 %, respectively, within 90 minutes of UV light exposure.


2017 ◽  
Vol 71 ◽  
pp. 399-405 ◽  
Author(s):  
M. Mahadeva Swamy ◽  
B.M. Nagabhushana ◽  
R. Hari Krishna ◽  
Nagaraju Kottam ◽  
R.S. Raveendra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document