Optimization of process parameters for friction stir spot welding of AA6061/Al2O3 by Taguchi method

Author(s):  
S. Suresh ◽  
K. Venkatesan ◽  
S. Rajesh
2014 ◽  
Vol 622-623 ◽  
pp. 557-566
Author(s):  
G. D’Urso ◽  
Claudio Giardini

A study was performed to evaluate how the Friction Stir Spot Welding process parameters affect both the thermal distribution in the welding region and the welding forces. An experimental campaign was performed by means of a CNC machine tool and FSSW lap joints on AA6060-T6 aluminum alloy plates having a thickness of 2+2 mm were executed. Five thermocouples were inserted into the samples at a specific distance from the specimen center. A set of tests was carried out by varying the process parameters, namely rotational speed, axial feed rate, plunging depth and dwell time. Axial welding forces were also measured during the execution of the experiments by means of a piezoelectric load cell. The experimental data collected were used to set up and to validate a simulative model of the process. In particular, a 2D FEM model was set up using the commercial code Deform 2D. A 2-dimensional FEM code was preferred in order to guarantee a very simple and practical model able to achieve results in a very short time. Since it is not possible to simulate the rotation of the tool in a 2D configuration, a specific external routine for the calculation of the developed thermal energy due to the friction between tool and workpiece was set up and implemented into the code starting from the local pressure distribution along the contact area.


Author(s):  
L Fratini ◽  
A Barcellona ◽  
G Buffa ◽  
D Palmeri

The results of an experimental study on friction stir spot welding (FSSW) of AA6082-T6 are reported. In particular, process mechanics is highlighted and joint strength is considered in relation to varying the most relevant process parameters. Furthermore, the results obtained are compared with those derived from the application of traditional mechanical fastening techniques such as clinching and riveting. In this way the effectiveness of FSSW is highlighted.


2020 ◽  
Vol 22 (4) ◽  
pp. 1371-1380
Author(s):  
Mustapha Arab ◽  
Mokhtar Zemri

AbstractFriction Stir Welding (FSW) was carried out on Aluminum Alloy 6082-T6 plates with dimensions of 200 × 70 × 2 mm. Design of Experiment (DOE) was applied to determine the most important factors which influence the Ultimate Tensile Strength (UTS) and Hardness (HV) of AA 6082-T6 joints produced by Friction Stir Welding (FSW). Effect of two factors which include tool rotational speed and welding speed on (UTS, HV) were investigated by Taguchi method using L9 orthogonal array to find the optimum process parameters. An analysis of variance (ANOVA) was carried out to determine which of the selected factors are more significant on both of responses, the optimum parameters for the higher UTS it found by using a rotational speed of 1400 rpm and 125 mm/min for the welding speed, also 1400 rpm and 160 mm/min to maximize Hardness (HV).


Sign in / Sign up

Export Citation Format

Share Document