Investigation of resistance of asphaltenes of high paraffin oil to precipitation

2019 ◽  
Author(s):  
Tatyana V. Petrenko ◽  
Natalya N. Gerasimova
Keyword(s):  
Author(s):  
Mohammad Reza. Shiran ◽  
Davar Amani ◽  
Abolghasem Ajami ◽  
Mahshad Jalalpourroodsari ◽  
Maghsoud Khalizadeh ◽  
...  

Abstract Objectives Breast cancer is a common malignant tumor in women with limited treatment options and multiple side effects. Today, the anti-cancer properties of natural compounds have attracted widespread attention from researchers worldwide. Methods In this study, we treated 4T1 tumor-bearing Balb/c mice with intraperitoneal injection of Auraptene, paraffin oil, and saline as two control groups. Body weight and tumor volume were measured before and after treatment. Hematoxylin and eosin (H & E) staining and immunohistochemistry of Ki-67 were used as markers of proliferation. In addition, ELISA assays were performed to assess serum IFN-γ and IL-4 levels. Results There was no significant change in body weight in all animal groups before and after treatment. 10 days after the last treatment, Auraptene showed its anti-cancer effect, which was confirmed by the smaller tumor volume and H & E staining. In addition, Ki-67 expression levels were significantly reduced in tumor samples from the Auraptene-treated group compared to the paraffin oil and saline-treated groups. In addition, in tumor-bearing and normal mice receiving Auraptene treatment, IL-4 serum production levels were reduced, while serum levels of IFN-γ were significantly up-regulated in tumor-bearing mice after Auraptene treatment. Conclusions In the case of inhibition of tumor volume and Ki-67 proliferation markers, Auraptene can effectively inhibit tumor growth in breast cancer animal models. In addition, it might increases Th1 and CD8 + T cell responses after reducing IL-4 serum levels and IFN-γ upregulation, respectively. However, further research is needed to clarify its mechanism of action.


The Lancet ◽  
1973 ◽  
Vol 301 (7806) ◽  
pp. 776 ◽  
Author(s):  
Israel Penn
Keyword(s):  

1978 ◽  
Vol 32 (5) ◽  
pp. 502-506 ◽  
Author(s):  
D. Warren Vidrine ◽  
David R. Mattson

A practical Fourier transform infrared system for real-time liquid chromatographic detection is described. Simple flowcell detection with automatic solvent subtraction is used, and detection of 500 ng of injected paraffin oil is demonstrated. Results from several chromatographic runs illustrate the system capability to serve as a real time infrared detector and simultaneously acquire infrared spectra.


1889 ◽  
Vol 27 (696supp) ◽  
pp. 11112-11114
Author(s):  
D. R. Steuart
Keyword(s):  

1979 ◽  
Vol 37 (1) ◽  
pp. 169-180
Author(s):  
P.B. Armstrong

The sole cell type (the amoebocyte) found in the coelomic fluid of the horseshoe crab, Limulus polyphemus can be stimulated to become motile by extravasation or trauma. Motility was studied using time-lapse microcinematography and direct microscopic examination of cells in tissue culture and in gill leaflets isolated from young animals. Phase-contrast and Nomarski differential-interference contrast optics were employed. Both in culture and in the gills, motile cells showed 2 interconvertible morphological types: the contracted cell, which was compact and rounded and had a relatively small area of contact with the substratum, and a flattened from with a larger area of contact. In both morphological types, motility involved the protrusion of hyaline pseudopods followed by flow of granular endoplasm forward in the pseudoplod. Cellular motility in vivo (in the gill leaflet) was morphologically identical to that displayed in tissue culture. In culture, motility was unaffected by the nature of the substratum: cells were indistinguishable on fluid (paraffin oil) or solid (glass) substrata or on hydrophobic (paraffin oil, siliconized glass) or hydrophilic (clean glass) surfaces. Cells migrated and spread on agar surfaces. Cell motility was unaffected by high concentrations (100 micrograms/ml) of the microtubule-depolymerizing agent colcemid and was abolished by cytochalasin B at 1 microgram/ml.


Sign in / Sign up

Export Citation Format

Share Document