Modulating electrical transport properties of SnSe crystal to improve the thermoelectric power factor by adjusting growth method

2020 ◽  
Vol 116 (9) ◽  
pp. 092103
Author(s):  
Hang-Fei Zhang ◽  
Yang-Yang Lv ◽  
Lu Xu ◽  
Ye-Cheng Luo ◽  
Hao-Min Lu ◽  
...  
2009 ◽  
Vol 1166 ◽  
Author(s):  
Julio E. Rodríguez ◽  
J. A. Niño

AbstractThermoelectric properties of polycrystalline La0.75Sr0.25Co1-xMnxO3-δ(0<x<0.08) (LSCoO-Mn) compounds have been studied. The samples were grown by solid-state reaction method; their transport properties were studied in the temperature range between 100 and 290K, as a function of temperature and the manganese content. The Seebeck coefficient (S) is positive over the measured temperature range and its magnitude increases with the manganese content up to values close to 160 μV/K. The electrical resistivity (ρ) goes from metallic to semiconducting behavior as the Mn level increases, at room temperature, ρ(T) exhibit values less than 4mΩ-cm. From S(T), ρ(T) and κ(T) data, the thermoelectric power factor and the figure of merit were determined. These performance parameters reach maximum values around 18 μW/K2-cm and 0.2, respectively. The observed behavior in the transport properties become these compounds potential thermoelectric materials, which could be used in thermoelectric applications.


2001 ◽  
Vol 16 (3) ◽  
pp. 774-777 ◽  
Author(s):  
Yong-Chae Chung ◽  
Han-Ill Yoo

Electrical transport properties, electrical conductivity, and thermoelectric power of a single-crystalline Mn0.45Zn0.43Fe2.12O4 were measured as functions of temperature in the range of 25 to 1000 °C. According to the small polaron hopping model, the values of the activation energy for small polaron hopping (EH) were obtained from the conductivity data in three different temperature regions: 0.032 eV for T < TC, 0.12 eV for TC < T < 600 °C, and 0.25 eV for 600 °C < T < 1000 °C. The behavior of conductivity and thermoelectric power data above TC is discussed in connection with cation redistribution.


Author(s):  
Wen Yang ◽  
Lili Wang ◽  
Yiming Mi ◽  
Guanghong Zhong ◽  
Qiuju Ma ◽  
...  

The work theoretically calculated the electronic structure and electrical transport properties of two configurations of single-walled MoS2 nanotubes: armchair nanotubes (ANTs) and zigzag nanotubes (ZNTs) based on the density functional theory and Boltzmann transport method. ANTs have an indirect one. while ZNTs have a direct bandgap structure. The Seebeck coefficient ([Formula: see text]), electrical conductivity ([Formula: see text] and power factor ([Formula: see text] were calculated as a function of carrier concentration, chemical potential and temperature using the Boltzmann transport method. The calculated power factor ([Formula: see text]) indicates that the most promising electronic properties were exhibited by [Formula: see text]-type ANTs and [Formula: see text]-type ZNTs. The [Formula: see text] of narrow bandgap (6, 6) (7, 7) (8, 8) semiconductors reached [Formula: see text], [Formula: see text] and [Formula: see text]WK[Formula: see text]m[Formula: see text] at room-temperature, respectively. (7, 7) nanotube have a maximum power factor of [Formula: see text]WK[Formula: see text]m[Formula: see text] at 950 K, and the maximum power factor of ANTs is almost twice that of ZNTs.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenghao Hou ◽  
Dongyang Wang ◽  
Jinfeng Wang ◽  
Guangtao Wang ◽  
Zhiwei Huang ◽  
...  

PbS is a latent substitute of PbTe thermoelectric materials, which is on account of its superiority in low cost and earth abundance. Here, the thermoelectric transport properties of p-type PbS by doping alkali metals (Na and Li) are investigated and it is verified that Li is a more effective dopant than Na. By introducing Li, the electrical and thermal transport properties were optimized collectively. The electrical transport properties were boosted remarkably via adjusting carrier concentration, and the maximum power factor (PFmax) of ~11.5 μW/cmK2 and average power factor (PFave) ~9.9 μW/cmK2 between 423 and 730 K in Pb0.99Li0.01S were achieved, which are much higher than those (~9.5 and ~7.7 μW/cmK2) of Pb0.99Na0.01S. Doping Li and Na can weaken the lattice thermal conductivity effectively. Combining the enlarged PF with suppressed total thermal conductivity, a maximum ZT ~0.5 at 730 K and a large average ZT ~0.4 at 423-730 K were obtained in p-type Pb0.99Li0.01S, which are higher than ~0.4 and ~0.3 in p-type Pb0.99Na0.01S, respectively.


1993 ◽  
Vol 07 (20) ◽  
pp. 1295-1299 ◽  
Author(s):  
P. VENUGOPAL REDDY ◽  
S. SHEKHAR ◽  
Y. PURUSHOTHAM

Electrical resistivity and thermoelectric power of glassy ribbons having compositions Fe 81 B 13.5 Si 3.5 C 2, Fe 67 Co 18 B 14 Si 1, Fe 39 Ni 39 Mo 4 Si 6 B 12, and Co 53 Ni 25 Fe 5 Si 11 B 6 have been studied over a temperature range of 300–750 K. The electrical transport properties of these materials are found to increase with increasing temperature, and their temperature variation has been explained on the basis of Ziman's theory.


Sign in / Sign up

Export Citation Format

Share Document