Electron‐beam induced current in GaAs field‐effect transistors

1982 ◽  
Vol 41 (2) ◽  
pp. 169-171 ◽  
Author(s):  
D. S. Newman ◽  
D. K. Ferry
2018 ◽  
Vol 924 ◽  
pp. 935-938
Author(s):  
Khaled Driche ◽  
Hitoshi Umezawa ◽  
Shinya Ohmagari ◽  
Hajime Okumura ◽  
Yoshiaki Mokuno ◽  
...  

Lateral gate depletion expansion towards drain contact has been analyzed on p-type diamond metal-semiconductor field effect transistor by electron beam induced current. The investigation was restricted to a closed channel to simplify the study and to directly observe the expansion of the lateral depletion region. The experimental data agreed with the theoretical model given in the literature.


Author(s):  
Kah Chin Cheong ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Yu Zhang ◽  
Brian Popielarski ◽  
...  

Abstract This paper demonstrates a two-pin Electron Beam Induced Current (EBIC) isolation technique to isolate the defective Fin with gate oxide damage in advanced Fin Field Effect Transistor (FinFET) devices. The basic principle of this twopin configuration is similar to two-point Electron Beam Absorption Current (EBAC) technique: a second pin as ground on the gate is added to partially shunt the EBIC current and thus creates EBIC contrast from the defective Fin. In this way, the challenge of highly resistive short path inside the Fin in a narrow gate can be overcome. The paper will provide failure analysis details using this technique for defective Fin isolation.


2007 ◽  
Vol 131-133 ◽  
pp. 449-454 ◽  
Author(s):  
Takashi Sekiguchi ◽  
J. Chen ◽  
Masami Takase ◽  
Naoki Fukata ◽  
Naoto Umezawa ◽  
...  

We have succeeded in imaging the leakage sites of hafnium silicate gate dielectrics of metal-oxide-semiconductor field-effect transistors (MOSFETs) by using electron-beam-induced current (EBIC) method. Leakage sites of p-channel MOSFETs were identified as bright spots under appropriate reverse bias condition when the electron beam energy is high enough to generate carriers in the silicon substrate. Most of the leakage sites were observed in the peripheries of shallow trench isolation. These results suggest that some process induced defects are the cause of leakage in these MOSFETs. Our observation demonstrates the advantage of EBIC characterization for failure analysis of high-k MOSFETs.


Author(s):  
A. Buczkowski ◽  
Z. J. Radzimski ◽  
J. C. Russ ◽  
G. A. Rozgonyi

If a thickness of a semiconductor is smaller than the penetration depth of the electron beam, e.g. in silicon on insulator (SOI) structures, only a small portion of incident electrons energy , which is lost in a superficial silicon layer separated by the oxide from the substrate, contributes to the electron beam induced current (EBIC). Because the energy loss distribution of primary beam is not uniform and varies with beam energy, it is not straightforward to predict the optimum conditions for using this technique. Moreover, the energy losses in an ohmic or Schottky contact complicate this prediction. None of the existing theories, which are based on an assumption of a point-like region of electron beam generation, can be used satisfactorily on SOI structures. We have used a Monte Carlo technique which provide a simulation of the electron beam interactions with thin multilayer structures. The EBIC current was calculated using a simple one dimensional geometry, i.e. depletion layer separating electron- hole pairs spreads out to infinity in x- and y-direction. A point-type generation function with location being an actual location of an incident electron energy loss event has been assumed. A collection efficiency of electron-hole pairs was assumed to be 100% for carriers generated within the depletion layer, and inversely proportional to the exponential function of depth with the effective diffusion length as a parameter outside this layer. A series of simulations were performed for various thicknesses of superficial silicon layer. The geometries used for simulations were chosen to match the "real" samples used in the experimental part of this work. The theoretical data presented in Fig. 1 show how significandy the gain decreases with a decrease in superficial layer thickness in comparison with bulk material. Moreover, there is an optimum beam energy at which the gain reaches its maximum value for particular silicon thickness.


Sign in / Sign up

Export Citation Format

Share Document