Activation characteristics and defect structure in Si‐implanted GaAs‐on‐Si

1987 ◽  
Vol 50 (17) ◽  
pp. 1161-1163 ◽  
Author(s):  
S. M. Vernon ◽  
S. J. Pearton ◽  
J. M. Gibson ◽  
K. T. Short ◽  
V. E. Haven
Keyword(s):  
1995 ◽  
Vol 71 (5) ◽  
pp. 1145-1159 ◽  
Author(s):  
H. Cerva ◽  
A. Krost ◽  
R. F. Schnabel ◽  
D. Bimberg

Author(s):  
D. Faulkner ◽  
G.W. Lorimer ◽  
H.J. Axon

It is now generally accepted that meteorites are fragments produced by the collision of parent bodies of asteroidal dimensions. Optical metallographic evidence suggests that there exists a group of iron meteorites which exhibit structures similar to those observed in explosively shock loaded iron. It seems likely that shock loading of meteorites could be produced by preterrestrial impact of their parent bodies as mentioned above.We have therefore looked at the defect structure of one of these meteorites (Trenton) and compared the results with those made on a) an unshocked ‘standard’ meteorite (Canyon Diablo)b) an artificially shocked ‘standard’ meteorite (Canyon Diablo) andc) an artificially shocked specimen of pure α-iron.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
J.A. Lambert ◽  
P.S. Dobson

The defect structure of ion-implanted silicon, which has been annealed in the temperature range 800°C-1100°C, consists of extrinsic Frank faulted loops and perfect dislocation loops, together with‘rod like’ defects elongated along <110> directions. Various structures have been suggested for the elongated defects and it was argued that an extrinsically faulted Frank loop could undergo partial shear to yield an intrinsically faulted defect having a Burgers vector of 1/6 <411>.This defect has been observed in boron implanted silicon (1015 B+ cm-2 40KeV) and a detailed contrast analysis has confirmed the proposed structure.


Author(s):  
H. L. Tsai ◽  
J. W. Lee

Growth of GaAs on Si using epitaxial techniques has been receiving considerable attention for its potential application in device fabrication. However, because of the 4% lattice misfit between GaAs and Si, defect generation at the GaAs/Si interface and its propagation to the top portion of the GaAs film occur during the growth process. The performance of a device fabricated in the GaAs-on-Si film can be degraded because of the presence of these defects. This paper describes a HREM study of the effects of both the substrate surface quality and postannealing on the defect propagation and elimination.The silicon substrates used for this work were 3-4 degrees off [100] orientation. GaAs was grown on the silicon substrate by molecular beam epitaxy (MBE).


Author(s):  
D. Gerthsen

The prospect of technical applications has induced a lot of interest in the atomic structure of the GaAs on Si(100) interface and the defects in its vicinity which are often studied by high resolution transmission electron microscopy. The interface structure is determined by the 4.1% lattice constant mismatch between GaAs and Si, the large difference between the thermal expansion coefficients and the polar/nonpolar nature of the GaAs on Si interface. The lattice constant mismatch is compensated by misfit dislocations which are characterized by a/2<110> Burgers vectors b which are oriented parallel or inclined on {111} planes with respect to the interface. Stacking faults are also frequently observed. They are terminated by partial dislocations with b = a/6<112> on {111} planes. In this report, the atomic structure of stair rod misfit dislocations is analysed which are located at the intersection line of two stacking faults at the interface.A very thin, discontinous film of GaAs has been grown by MBE on a Si(100) substrate. Fig.1.a. shows an interface section of a 27 nm wide GaAs island along [110] containing a stair rod dislocation. The image has been taken with a JEOL 2000EX with a spherical aberration constant Cs = 1 mm, a spread of focus Δz = 10 nm and an angle of beam convergence ϑ of 2 mrad.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-867-C1-870
Author(s):  
J. F. BAUMARD ◽  
P. ABELARD ◽  
J . LECOMTE
Keyword(s):  

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-597-C5-604
Author(s):  
JHANG W. LEE ◽  
H. SHICHIJO ◽  
L. T. TRAN

Sign in / Sign up

Export Citation Format

Share Document