scholarly journals Large-scale edge waves generated by a moving atmospheric pressure

2012 ◽  
Vol 2 (4) ◽  
pp. 042001 ◽  
Author(s):  
Chao An ◽  
Philip L-F. Liu ◽  
Seung Nam Seo
2020 ◽  
Vol 117 (13) ◽  
pp. 134102
Author(s):  
Xuechen Li ◽  
Jiacun Wu ◽  
Boyu Jia ◽  
Kaiyue Wu ◽  
Pengcheng Kang ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 4127
Author(s):  
Xu Han ◽  
James Kapaldo ◽  
Yueying Liu ◽  
M. Sharon Stack ◽  
Elahe Alizadeh ◽  
...  

The effective clinical application of atmospheric pressure plasma jet (APPJ) treatments requires a well-founded methodology that can describe the interactions between the plasma jet and a treated sample and the temporal and spatial changes that result from the treatment. In this study, we developed a large-scale image analysis method to identify the cell-cycle stage and quantify damage to nuclear DNA in single cells. The method was then tested and used to examine spatio-temporal distributions of nuclear DNA damage in two cell lines from the same anatomic location, namely the oral cavity, after treatment with a nitrogen APPJ. One cell line was malignant, and the other, nonmalignant. The results showed that DNA damage in cancer cells was maximized at the plasma jet treatment region, where the APPJ directly contacted the sample, and declined radially outward. As incubation continued, DNA damage in cancer cells decreased slightly over the first 4 h before rapidly decreasing by approximately 60% at 8 h post-treatment. In nonmalignant cells, no damage was observed within 1 h after treatment, but damage was detected 2 h after treatment. Notably, the damage was 5-fold less than that detected in irradiated cancer cells. Moreover, examining damage with respect to the cell cycle showed that S phase cells were more susceptible to DNA damage than either G1 or G2 phase cells. The proposed methodology for large-scale image analysis is not limited to APPJ post-treatment applications and can be utilized to evaluate biological samples affected by any type of radiation, and, more so, the cell-cycle classification can be used on any cell type with any nuclear DNA staining.


Author(s):  
Stefano Consonni ◽  
Ennio Macchi ◽  
Francesco Farina

Externally Fired Combined Cycles (EFCC) are one of the options allowing the use of “dirty” fuels like coal, biomass or waste in conjunction with modern, high efficiency gas turbines. The plant concept comprises an indirect-contact ceramic heat exchanger where compressed air exiting the gas turbine compressor is heated by hot combustion gases; the combustor is placed downstream the turbine and operates at nearly atmospheric pressure. From a thermodynamic standpoint, the cycle is equivalent to a combined cycle with supplementary firing. Attainable efficiencies are higher than those achievable by steam cycles (even the most advanced ultra-supercritical), as well as those of most other coal-based technologies (PFBC and IGCC). These efficiency advantages must be weighted against the uncertainty (and risk) of the realization of high temperature ceramic heat exchangers, and the challenges for the design of the combustor. This two-part paper discusses thermodynamic, technological and economic issues crucial to the success of EFCCs, both for large scale utility service (3–400 MWe1 and more) and for medium/low scale applications (down to 30–50 MWe1). Part A addresses the most relevant thermodynamic and technological issues, performing comparisons with the technologies which will presumably dominate the coal-based power generation market of the next century.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1001
Author(s):  
Shih-Chen Shi ◽  
Po-Wei Huang ◽  
Jason Hsiao-Chun Yang

Zinc oxide (ZnO) coatings have various unique properties and are often used in applications such as transparent conductive films in photovoltaic systems. This study developed an atmospheric-pressure microplasma-enhanced ultrasonic spray pyrolysis system, which can prepare large-area ZnO coatings at low temperatures under atmospheric-pressure conditions. The addition of an atmospheric-pressure microplasma-assisted process helped improve the preparation of ZnO coatings under atmospheric conditions, compared to using a conventional ultrasonic spray pyrolysis process, effectively reducing the preparation temperature to 350 °C. A program-controlled three-axis platform demonstrated its potential for the large-scale synthesis of ZnO coatings. The X-ray diffraction results showed that the ZnO coatings prepared by ultrasonic spray pyrolysis exhibited (002) preferred growth orientation and had a visible-light penetration rate of more than 80%. After vacuum treatment, the ZnO reached a 1.0 × 10−3 Ωcm resistivity and a transmittance of 82%. The tribology behavior of ZnO showed that the vacuum-annealed coating had a low degree of wear and a low coefficient of friction as the uniformly distributed and dense coating increased its load capacity.


Author(s):  
R. Lo Frano ◽  
A. Pesetti ◽  
D. Aquaro ◽  
M. Olcese

Abstract The Direct Contact Condensation (DCC) is the main phenomenon characterizing the steam condensation. It plays an important role for the operation of Vacuum Vessel Pressure Suppression System (VVPSS) tanks, particularly for managing the Ingress of Coolant Event (determining fusion reactor overpressurization). It is safety relevant (key) system of the fusion reactor because by condensing the steam generated during such accident event allows to damp the overpressure. This paper deals with experimental and theoretical analyses of the DCC at sub-atmospheric pressure. The similitude analysis was elaborated to scale up the experimental results obtained in the reduced scale facility: similitude laws are used for the design of large experimental rig. Correlations are defined starting from the water temperature and pressure variation already obtained in the small-scale rig. Furthermore, the experimental rig and its main components accordingly designed (and under construction at the University of Pisa) allow to study at large scale the steam condensation. The testing conditions are presented and discussed.


CrystEngComm ◽  
2015 ◽  
Vol 17 (5) ◽  
pp. 1065-1072 ◽  
Author(s):  
Zhuo Xu ◽  
Fei Liu ◽  
Daokun Chen ◽  
Tongyi Guo ◽  
Shunyu Jin ◽  
...  

A novel SVS technique is used to prepare cathode WO3 nanowire arrays with excellent emission properties on a glass substrate.


2021 ◽  
Author(s):  
Rosa Lo Frano ◽  
Alessio Pesetti ◽  
Donato Aquaro ◽  
Marco Olcese

Sign in / Sign up

Export Citation Format

Share Document