Thermal properties, FTIR characteristics and physical parameters of Europium oxide doped phosphate glasses

2020 ◽  
Author(s):  
M. Shwetha ◽  
B. Eraiah
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Ifty Ahmed ◽  
S. S. Shaharuddin ◽  
N. Sharmin ◽  
D. Furniss ◽  
C. Rudd

AbstractPhosphate glasses are novel amorphous biomaterials due to their fully resorbable characteristics, with controllable degradation profiles. In this study, phosphate glasses containing titanium and/or iron were identified to exhibit sufficiently matched thermal properties (glass transition temperature, thermal expansion coefficient and viscosity) which enabled successful co-extrusion of glass billets to form a core/clad preform. The cladding composition for the core/clad preforms were also reversed. Fe clad and Ti clad fibres were successfully drawn with an average diameter of between 30~50 μm. The average cladding annular thickness was estimated to be less than 2 μm. Annealed core/clad fibres were degraded in PBS for a period of 27 days. The strength of the Fe clad fibres appeared to increase from 303 ± 73 MPa to 386 ± 45 MPa after nearly 2 weeks in the dissolution medium (phosphate buffered solution) before decreasing by day 27. The strength of the Ti clad fibres revealed an increase from 236 ± 53 MPa to 295 ± 61 MPa when compared at week 3. The tensile modulus measured for both core/clad fibres ranged between 51 GPa to 60 GPa. During the dissolution study, Fe clad fibres showed a peeling mechanism compared to the Ti clad fibres.


2004 ◽  
Vol 71B (1) ◽  
pp. 22-29 ◽  
Author(s):  
A.J. Parsons ◽  
L.D. Burling ◽  
C.D. Rudd ◽  
C.A. Scotchford ◽  
G.S. Walker

2020 ◽  
Vol 142 (1) ◽  
pp. 203-209 ◽  
Author(s):  
Paweł Goj ◽  
Małgorzata Ciecińska ◽  
Magdalena Szumera ◽  
Paweł Stoch

Abstract Iron phosphate glasses are materials that can have many applications like durable matrixes in waste immobilization techniques, biomaterials, optoelectronic devices, etc. Their possible usage is related to their glass network and thermal properties. The influence of Na2O content on thermal properties and crystallization ability of iron phosphate glass of base composition 30 Fe2O3–70 P2O5 mol% were studied. Increasing the content of Na2O causes a decrease in transformation temperature and increase in ΔCp. Characteristic temperatures, thermal stability and crystallizing phases were determined. Increasing content of sodium causes depolarization of iron phosphate glass network which causes a continuous change in ΔCp and glass transformation temperature. Discontinuous change in some glass properties suggests structure rebuilding about 30 mol% of Na2O.


2006 ◽  
Vol 352 (6-7) ◽  
pp. 709-713 ◽  
Author(s):  
Hiromichi Takebe ◽  
Takashi Harada ◽  
Makoto Kuwabara

2014 ◽  
Vol 117 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Pawel Stoch ◽  
Malgorzata Ciecinska ◽  
Agata Stoch

2021 ◽  
Author(s):  
Antonio Galgaro ◽  
Alberto Carrera ◽  
Eloisa Di Sipio

<p>For the design and implementation of an efficient Ground Source Heat Pump (GSHP) system, the local<br>subsoil represents the core element. Since the thermal performance of Borehole Heat Exchangers (BHEs) is<br>site-specific, its planning typically requires the knowledge of the thermal proprieties of the ground, which<br>are influenced by the local stratigraphic sequence and the hydrogeological conditions. The evaluation of<br>the variations of the ground thermal conductivity (TC) along the depth, as well as its undisturbed<br>temperature, are essential to correctly plan the BHEs field and improve the performance of the ground<br>heat exchangers themselves.<br>Thermal Response Test (TRT) is a well-known experimental procedure that allows to obtain the thermal<br>properties of the ground. However, the traditional method provides a single value of the equivalent TC and<br>the undisturbed temperature, which can be associated with the average value over the entire BHE length,<br>with no chance to detect the thermo-physical parameters variations with depth and to discriminate the<br>contributions of the different geological levels crossed by the geothermal exchange probe. Indeed,<br>different layers within a stratigraphic sequence, may have different thermal properties, according to the<br>presence and to the flow rate of groundwater, as well as to granulometry and mineralogical composition,<br>density, and porosity of the lithologies. The identification of the different contributions to the thermal<br>exchange provided by each geological unit, in practice, can further support BHE design, helping to<br>determine the most suitable borehole length and number, achieving the highest heat exchange capability<br>at the lower initial cost of implementing of the entire geothermal plant.<br>In the last years, new improved approaches to execute an enhanced thermal response test have been<br>developed, as the pioneer wireless data transmission GEOsniff technology (enOware GmbH) tested in this<br>study. This measurement method is characterized by its sensors, 20mm-diameter marbles equipped by<br>pressure and temperature transducers combined with a system of data storing and wireless data<br>transmission. Released at regular intervals down the testing BHE, infilled with water, each marble freely<br>floats allowing the measurement of the water temperature variations over time at different depths, in<br>order to identify areas with particular values of thermal conductivity related to distinctive hydrogeological<br>conditions or lithological assessment. This way, the GEOsniff technology allows a high-resolution spatially-<br>distributed representation of the subsoil thermal properties along the BHE.<br>In this work, we present the test outputs acquired at the new humanistic campus of the University of<br>Padova, located in the Eastern Po river plain (Northern Italy). The thermal conductivity data obtained by<br>the GEOsniff method have been compared and discussed, by considering the standard TRT outputs. This<br>innovative technique looks promising to support the optimization of the borehole length in the design<br>phase, even more where the complexity of the treated geological setting increases.</p>


2011 ◽  
Author(s):  
Sidek Hj. Abd. Aziz ◽  
Hamezan Ahmad ◽  
Zaidan A. Wahab ◽  
Zainal Abidin Sulaiman ◽  
Zainal Abidin Talib ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document