Extremely-huge wave localization in coupled multilayer heterogeneous phononic crystal resonators

2018 ◽  
Vol 12 (1) ◽  
pp. 017001 ◽  
Author(s):  
Aichao Yang ◽  
Caijiang Lu ◽  
Fayuan Wu ◽  
Yu Wu ◽  
Liang Zhu ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Soo-Ho Jo ◽  
Yong Chang Shin ◽  
Wonjae Choi ◽  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
...  

AbstractThis study aims to investigate elastic wave localization that leverages defect band splitting in a phononic crystal with double defects through in-depth analysis of comparison of numerical and experimental results. When more than one defect is created inside a phononic crystal, these defects can interact with each other, resulting in a distinctive physical phenomenon from a single defect case: defect band splitting. For a phononic crystal consisting of circular-hole type unit cells in a thin aluminum plate, under A0 (the lowest antisymmetric) Lamb waves, both numerical simulations and experiments successfully confirm the defect band splitting phenomenon via frequency response functions for the out-of-plane displacement calculated/measured at the double defects within a finite distance. Furthermore, experimental visualization of in-phase and out-of-phase defect mode shapes at each frequency of the split defect bands is achieved and found to be in excellent agreement with the simulated results. Different inter-distance combinations of the double defects reveal that the degree of the defect band splitting decreases with  the increasing distance due to weaker coupling between the defects. This work may shed light on engineering applications of a multiple-defect-introduced phononic crystal, including broadband energy harvesting, frequency detectors, and elastic wireless power transfer.


2020 ◽  
Vol 127 (16) ◽  
pp. 164901 ◽  
Author(s):  
Soo-Ho Jo ◽  
Heonjun Yoon ◽  
Yong Chang Shin ◽  
Miso Kim ◽  
Byeng D. Youn

2015 ◽  
Vol 8 (5) ◽  
pp. 057101 ◽  
Author(s):  
Aichao Yang ◽  
Ping Li ◽  
Yumei Wen ◽  
Chao Yang ◽  
Decai Wang ◽  
...  

2011 ◽  
Vol 675-677 ◽  
pp. 639-642
Author(s):  
A Li Chen ◽  
Yue Sheng Wang ◽  
Chuan Zeng Zhang

The supercell based plane wave expansion method is used to study the effects of random disorders on the band structures of a two-dimensional (2D) solid-fluid phononic crystal. Phononic systems with steel scatterers embedded in a water matrix are calculated in detail. The radius disorder and location disorder are concerned. The influences of the disorder degree on the first band gap are investigated. The localization phenomenon is discussed by computing the displacement fields in the supercell.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chun-Wei Chen ◽  
Rajesh Chaunsali ◽  
Johan Christensen ◽  
Georgios Theocharis ◽  
Jinkyu Yang

AbstractDemonstration of topological boundary modes in elastic systems has attracted a great deal of attention over the past few years due to its unique protection characteristic. Recently, second-order topological insulators have been proposed in manipulating the topologically protected localized states emerging only at corners. Here, we numerically and experimentally study corner states in a two-dimensional phononic crystal, namely a continuous elastic plate with embedded bolts in a hexagonal pattern. We create interfacial corners by adjoining trivial and non-trivial topological configurations. Due to the rich interaction between the bolts and the continuous elastic plate, we find a variety of corner states of and devoid of topological origin. Strikingly, some of the corner states are not only highly-localized but also tunable. Taking advantage of this property, we experimentally demonstrate asymmetric corner localization in a Z-shaped domain wall. This finding could create interest in exploration of tunable corner states for the use of advanced control of wave localization.


2011 ◽  
Vol 197-198 ◽  
pp. 352-357
Author(s):  
A Li Chen ◽  
Yue Sheng Wang ◽  
Chuan Zeng Zhang

In this paper, combined with the supercell technique, the plane wave expansion method is used to calculate the band structures of the two-dimensional phononic crystals with line defects and the random disorders in either radius or location of the scatterers. Phononic systems with plumbum scatterers embedded in an epoxy matrix are calculated in detail. The influences of the random disorder on the band structures of anti-plane waveguiding modes will be discussed. The displacement distributions are calculated to show the wave localization phenomenon. Propagation of the guided wave in the phononic crystals with different disordered degree is studied. The analysis is relevant to the assessment of the influences of manufacture errors on wave behaviors in waveguiding phononic crystals as well as the possible control of wave propagation by intentionally introducing disorders into the systems.


2012 ◽  
Vol 132 (5) ◽  
pp. 686-690
Author(s):  
Yusuke Kanno ◽  
Kenji Tsuruta ◽  
Kazuhiro Fujimori ◽  
Hideki Fukano ◽  
Shigeji Nogi

Author(s):  
Edson Jansen Pedrosa de Miranda Junior ◽  
Jose Maria Campos dos Santos

Sign in / Sign up

Export Citation Format

Share Document