scholarly journals Enhancement of zero-field skyrmion density in [Pt/Co/Fe/Ir]2 multilayers at room temperature by the first-order reversal curve

2020 ◽  
Vol 127 (22) ◽  
pp. 223901 ◽  
Author(s):  
Mangyuan Ma ◽  
Calvin Ching Ian Ang ◽  
Yong Li ◽  
Zizhao Pan ◽  
Weiliang Gan ◽  
...  
2000 ◽  
Vol 66 (11) ◽  
pp. 4798-4802 ◽  
Author(s):  
Line Johnsen ◽  
Gunnar Fimland ◽  
Vincent Eijsink ◽  
Jon Nissen-Meyer

ABSTRACT Pediocin PA-1 is a food grade antimicrobial peptide that has been used as a food preservative. Upon storage at 4°C or room temperature, pediocin PA-1 looses activity, and there is a concomitant 16-Da increase in the molecular mass. It is shown that the loss of activity follows first-order kinetics and that the instability can be prevented by replacing the single methionine residue (Met31) in pediocin PA-1. Replacing Met by Ala, Ile, or Leu protected the peptide from oxidation and had only minor effects on bacteriocin activity (for most indicator strains 100% activity was maintained). Replacement of Met by Asp was highly deleterious for bacteriocin activity.


2006 ◽  
Vol 61 (5-6) ◽  
pp. 289-292 ◽  
Author(s):  
Hong-Gang Liu ◽  
Xiao-Xuan Wu ◽  
Wen-Chen Zheng ◽  
Lv He

The EPR zero-field splitting D (= b02 ) and its pressure and temperature dependence for trigonal Mn2+ centers in low and room temperature phases in [Zn(H2O)6](BF4)2 :Mn2+ crystal are studied by a high-order perturbation formula based on the dominant spin-orbit coupling mechanism. From the studies, the local trigonal distortion angles, the local angular compressibilities and the local angular thermal expansion coefficients for Mn2+ centers in both phases of the [Zn(H2O)6](BF4)2 crystal are estimated. The results are discussed


2021 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

The applicability of magnetocaloric materials is limited by irreversibility. In this work, we evaluate the reversible magnetocaloric response associated with magnetoelastic transitions in the framework of the Bean-Rodbell model. This model allows the description of both second- and first-order magnetoelastic transitions by the modification of the η parameter (η<1 for second-order and η>1 for first-order ones). The response is quantified via the Temperature-averaged Entropy Change (TEC), which has been shown to be an easy and effective figure of merit for magnetocaloric materials. A strong magnetic field dependence of TEC is found for first-order transitions, having a significant increase when the magnetic field is large enough to overcome the thermal hysteresis of the material observed at zero field. This field value, as well as the magnetic field evolution of the transition temperature, strongly depend on the atomic magnetic moment of the material. For a moderate magnetic field change of 2 T, first-order transitions with η≈1.3−1.8 have better TEC than those corresponding to stronger first-order transitions and even second-order ones.


2018 ◽  
Vol 20 (26) ◽  
pp. 18117-18126 ◽  
Author(s):  
Zhen-Lu Zhang ◽  
Dan-Min Liu ◽  
Wei-Qiang Xiao ◽  
Hui Li ◽  
Shao-Bo Wang ◽  
...  

MnFe(P,Ge) is a promising magnetocaloric material for potential refrigeration applications near room temperature.


2020 ◽  
Vol 8 (17) ◽  
pp. 5868-5872 ◽  
Author(s):  
Zhangran Gao ◽  
Yuying Wu ◽  
Zheng Tang ◽  
Xiaofan Sun ◽  
Zixin Yang ◽  
...  

Ferroelectricity of trimethylammonium bromide was discovered near room temperature, which undergoes a first-order paraelectric–ferroelectric phase transition at the Curie temperature around 286 K.


2018 ◽  
Vol 101 (4) ◽  
pp. 1009-1013
Author(s):  
A Hemdan ◽  
Adel M Michael

Abstract A simple, specific, and rapid kinetic study of benazepril (BNZ) hydrolysis was developed and validated using HPLC. BNZ was degraded using 0.1 N sodium hydroxide at room temperature to produce benazeprilat, which is an active metabolite of BNZ and acts as an angiotensin-converting enzyme inhibitor. Analysis was carried out using an Athena C18 column (4.6 × 250 mm, 5 µm particle size). The mobile phase consists of a mixture of phosphate buffer (pH 4.5) and acetonitrile (53 + 47, v/v) at a flow rate of 1 mL/min. UV detection was accomplished at 242 nm using moexipril as the internal standard. The method was validated according to International Conference on Harmonization guidelines, and the calibration curve was linear over the range 10–100 µg/mL, with acceptable accuracy and precision. Kinetic profiling of the hydrolysis was shown to follow pseudo-first-order kinetics. The method was applied to the assay of BNZ in combined dosage form with no interference from other ingredients. The obtained results were statistically compared with those of the official method, showing no significant difference.


2000 ◽  
Vol 55 (1-2) ◽  
pp. 225-229 ◽  
Author(s):  
Hideta Ishihara ◽  
Keizo Horiuchi ◽  
Thorsten M. Gesing ◽  
Shi-qi Dou ◽  
J.-Christian Buhl ◽  
...  

The temperature dependence of 127I NQR and DSC as well as the crystal structure at room temperature of the title compound were determined. This compound shows a first-order phase transition of an order-disorder type at 245 K. Eight 127I(v1:m = ±1/2 ↔ ±3/2) NQR lines of 79.57, 81.86, 82.56, 83.36, 84.68, 87.72, 88.34, and 88.86 MHz, and corresponding eight 127I(v2: m = ±3/2 ↔±5/2) NQR lines were observed at liquid nitrogen temperature. Three 127I(υi) NQR lines wfth an intensity ratio of 1:1:2 in the order of decreasing frequency were observed just above the transition point and two NQR lines except for the middle-frequency line disappeared around room temperature. This temperature behavior of NQR lines is very similar to that observed in [N(CH3)4]2Hgl4. Another first-order phase transition takes place at 527 K. The structure of the room-temperature phase was redetermined: orthorhombic, Pnma, Z = 4, a = 1342.8(3), b = 975.7(2), c = 1696.5(3) pm. The NQR result of three lines with an intensity ratio of 1:1:2 is in agreement with this structure. The thermal displacement parameters of atoms in both cations and anions are large.


1974 ◽  
Vol 52 (13) ◽  
pp. 2513-2515 ◽  
Author(s):  
R. A. Back ◽  
C. Willis

The near-ultraviolet absorption spectrum of diimide in liquid ammonia at −50 °C is shifted about 500 Å to the red compared with the gas-phase spectrum, with λmax = 4000 Å. The spectrum is also broadened and the vibrational structure largely obscured. It is suggested that hydrogen bonding is responsible for these changes.Diimide is much more stable in liquid ammonia between −65 and −38 °C than in the gas phase at room temperature. A first-order decay is observed with Arrhenius parameters of A = 1.9 × 103 s−1 and E = 6.6 kcal/mol; this is always preceded by a more rapid, higher-order initial decay which may be related to the rapid decomposition observed during vaporization.


Sign in / Sign up

Export Citation Format

Share Document