scholarly journals Time-dependent relaxed magnetohydrodynamics: Inclusion of cross helicity constraint using phase-space action

2020 ◽  
Vol 27 (6) ◽  
pp. 062504 ◽  
Author(s):  
R. L. Dewar ◽  
J. W. Burby ◽  
Z. S. Qu ◽  
N. Sato ◽  
M. J. Hole
Author(s):  
Peter Mann

This chapter examines the structure of the phase space of an integrable system as being constructed from invariant tori using the Arnold–Liouville integrability theorem, and periodic flow and ergodic flow are investigated using action-angle theory. Time-dependent mechanics is formulated by extending the symplectic structure to a contact structure in an extended phase space before it is shown that mechanics has a natural setting on a jet bundle. The chapter then describes phase space of integrable systems and how tori behave when time-dependent dynamics occurs. Adiabatic invariance is discussed, as well as slow and fast Hamiltonian systems, the Hannay angle and counter adiabatic terms. In addition, the chapter discusses foliation, resonant tori, non-resonant tori, contact structures, Pfaffian forms, jet manifolds and Stokes’s theorem.


2002 ◽  
Vol 305 (3-4) ◽  
pp. 93-99 ◽  
Author(s):  
J Shamanna ◽  
B Talukdar ◽  
U Das

1991 ◽  
Vol 01 (03) ◽  
pp. 667-679 ◽  
Author(s):  
YING-CHENG LAI ◽  
CELSO GREBOGI

We consider the classical scattering of particles in a one-degree-of-freedom, time-dependent Hamiltonian system. We demonstrate that chaotic scattering can be induced by periodic oscillations in the position of the potential. We study the invariant sets on a surface of section for different amplitudes of the oscillating potential. It is found that for small amplitudes, the phase space consists of nonescaping KAM islands and an escaping set. The escaping set is made up of a nonhyperbolic set that gives rise to chaotic scattering and remains of KAM islands. For large amplitudes, the phase space contains a Lebesgue measure zero invariant set that gives rise to chaotic scattering. In this regime, we also discuss the physical origin of the Cantor set responsible for the chaotic scattering and calculate its fractal dimension.


1994 ◽  
Vol 08 (11n12) ◽  
pp. 1563-1576 ◽  
Author(s):  
S.S. MIZRAHI ◽  
M.H.Y. MOUSSA ◽  
B. BASEIA

We consider the most general Time-Dependent (TD) quadratic Hamiltonian written in terms of the bosonic operators a and a+, which may represent either a charged particle subjected to a harmonic motion, immersed in a TD uniform magnetic field, or a single mode photon field going through a squeezing medium. We solve the TD Schrödinger equation by a method that uses, sequentially, a TD unitary transformation and the diagonalization of a TD invariant, and we verify that the exact solution is a complete set of TD states. We also obtain the evolution operator which is essential to express operators in the Heisenberg picture. The variances of the quadratures are calculated and a phase space of parameters introduced, in which we identify squeezing regions. The results for some special cases are presented and as an illustrative example the parametric oscillator is revisited and the trajectories in phase space drawn.


2017 ◽  
Vol 95 (6) ◽  
Author(s):  
F. Krumm ◽  
W. Vogel ◽  
J. Sperling

1985 ◽  
Vol 113 ◽  
pp. 373-413 ◽  
Author(s):  
Stuart L. Shapiro

The dynamical behavior of a relaxed star cluster containing a massive, central black hole poses a challenging problem for the theorist and intriguing possibilities for the observer. The historical development of the subject is sketched and the salient features of the physical solution and its observational consequences are summarized.The full dynamical problem of a relaxed, self-gravitating, large N-body system containing a massive central black hole has all the necessary ingredients to excite the most dispassionate many-body, computational physicist: it is a time-dependent, multidimensional, nonlinear problem which must be solved over widely disparate length and time scales simultaneously. The problem has been tackled at various levels of approximation over the years. A new 2+1 dimensional Monte Carlo simulation code has been developed in appreciable generality to solve the time-dependent Fokker-Planck equation in E-J space for this problem. The code incorporates such features as (1) a particle “cloning and renormalization” scheme to provide a statistically reliable population of test particles in low density regions of phase space and (2) a time-step “adjustment” algorithm to ensure integration on local relaxation timescales without having to follow typical particles on orbital trajectories. However, critical regions in phase space (e.g. disruption “loss-cone” trajectories) can still be followed on orbital timescales. Numerical results obtained with this Monte Carlo scheme for the dynamical structure and evolution of globular star clusters and dense galactic nuclei containing massive black holes are reviewed.Recent dynamical integrations of the Einstein field equations for spherical, collisionless (Vlasov) systems in General Relativity suggest a possible origin for the supermassive black holes believed to power quasars and active galactic nuclei. This scenario is discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document