scholarly journals Intrinsic quality factor extraction of multi-port cavity with arbitrary coupling

2021 ◽  
Vol 92 (1) ◽  
pp. 014704
Author(s):  
D. Frolov
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew W. Puckett ◽  
Kaikai Liu ◽  
Nitesh Chauhan ◽  
Qiancheng Zhao ◽  
Naijun Jin ◽  
...  

AbstractHigh quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. Integration in a photonic waveguide platform is key to reducing cost, size, power and sensitivity to environmental disturbances. However, to date, the Q of all-waveguide resonators has been relegated to below 260 Million. Here, we report a Si3N4 resonator with 422 Million intrinsic and 3.4 Billion absorption-limited Qs. The resonator has 453 kHz intrinsic, 906 kHz loaded, and 57 kHz absorption-limited linewidths and the corresponding 0.060 dB m−1 loss is the lowest reported to date for waveguides with deposited oxide upper cladding. These results are achieved through a careful reduction of scattering and absorption losses that we simulate, quantify and correlate to measurements. This advancement in waveguide resonator technology paves the way to all-waveguide Billion Q cavities for applications including nonlinear optics, atomic clocks, quantum photonics and high-capacity fiber communications.


2006 ◽  
Vol 16 (6) ◽  
pp. S45-S53 ◽  
Author(s):  
Baptiste Le Foulgoc ◽  
Tarik Bourouina ◽  
Olivier Le Traon ◽  
Alain Bosseboeuf ◽  
Frédéric Marty ◽  
...  

2018 ◽  
Vol 35 (3) ◽  
pp. 351-358
Author(s):  
N. D. Vy ◽  
N. V. Cuong ◽  
C. M. Hoang

ABSTRACTA mechanical beam resonator engineered at nanoscale for suppressing thermoelastic damping to obtain ultrahigh quality factor is reported. The resonator employs the torsion mode of a spring beam to excite the rotation oscillation of a nanoscale resonant beam. The ultralow thermoelastic damping in the resonator is obtained by employing torsion oscillation. Optimal study of thermoelastic damping is carried out by varying the dimensional parameters of the resonator. The resonator operating in the MHz regime with the quality factor over one million is obtainable by the proposed oscillation exciting method and appropriate design of dimensional parameters of the beams. In order to obtain such overall intrinsic quality factor, virtual supports are employed to eliminate attachment loss in the resonator.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7654
Author(s):  
Song Jin ◽  
Peng Sha ◽  
Weimin Pan ◽  
Jiyuan Zhai ◽  
Zhenghui Mi ◽  
...  

A circular electron positron collider (CEPC) will adopt hundreds of 650-MHz superconducting cavities with high quality factor (Q) and accelerating gradient (Eacc). Two 650-MHz single-cell cavities made of fine-grain niobium were first treated via buffered chemical polishing (BCP), which was easy and convenient. However, the vertical test results could not meet the specification of the CEPC (4 × 1010 at 22 MV/m). Therefore, electro-polishing (EP) of 650-MHz single-cell cavities was conducted, which was complicated but remarkably effective. Both 650-MHz single-cell cavities achieved state-of-the-art gradients of 35 MV/m after the EP process, which is extremely high for large elliptical cavities (frequency < 1 GHz). One cavity achieved an intrinsic quality factor (Q0) of 4.5 × 1010 at 22.0 MV/m, which was higher than the CEPC spec. The other cavity obtained a lower Q0 of 3.4 × 1010 at 22.0 MV/m, which may have resulted from the cancellation of high-temperature annealing.


Sign in / Sign up

Export Citation Format

Share Document