Spinning behavior of flow-acoustic resonant fields inside a cavity: Vortex-shedding modes and diametral acoustic modes

2020 ◽  
Vol 32 (8) ◽  
pp. 085109 ◽  
Author(s):  
Peng Wang ◽  
Yingzheng Liu
2015 ◽  
Vol 9 (3) ◽  
pp. 2487-2502 ◽  
Author(s):  
Igor V. Lebed

Scenario of appearance and development of instability in problem of a flow around a solid sphere at rest is discussed. The scenario was created by solutions to the multimoment hydrodynamics equations, which were applied to investigate the unstable phenomena. These solutions allow interpreting Stokes flow, periodic pulsations of the recirculating zone in the wake behind the sphere, the phenomenon of vortex shedding observed experimentally. In accordance with the scenario, system loses its stability when entropy outflow through surface confining the system cannot be compensated by entropy produced within the system. The system does not find a new stable position after losing its stability, that is, the system remains further unstable. As Reynolds number grows, one unstable flow regime is replaced by another. The replacement is governed tendency of the system to discover fastest path to depart from the state of statistical equilibrium. This striving, however, does not lead the system to disintegration. Periodically, reverse solutions to the multimoment hydrodynamics equations change the nature of evolution and guide the unstable system in a highly unlikely direction. In case of unstable system, unlikely path meets the direction of approaching the state of statistical equilibrium. Such behavior of the system contradicts the scenario created by solutions to the classic hydrodynamics equations. Unstable solutions to the classic hydrodynamics equations are not fairly prolonged along time to interpret experiment. Stable solutions satisfactorily reproduce all observed stable medium states. As Reynolds number grows one stable solution is replaced by another. They are, however, incapable of reproducing any of unstable regimes recorded experimentally. In particular, stable solutions to the classic hydrodynamics equations cannot put anything in correspondence to any of observed vortex shedding modes. In accordance with our interpretation, the reason for this isthe classic hydrodynamics equations themselves.


1993 ◽  
Vol 250 ◽  
pp. 481-508 ◽  
Author(s):  
D. Brika ◽  
A. Laneville

In an experimental study of the vortex-induced oscillations of a long flexible circular cylinder, the observed stationary amplitudes describe an hysteresis loop partially different from earlier studies. Each branch of the loop is associated with a vortex shedding mode and, as a jump from one branch to the other occurs, the phase difference between the cylinder displacement and the vortex shedding undergoes an abrupt change. The critical flow velocities at which the jump occurs concur with the flow visualization observations of Williamson & Roshko (1988) on the vortex shedding modes near the fundamental synchronization region. Impulsive regimes, obtained at a given flow velocity with the cylinder initially at rest or pre-excited, and progressive regimes resulting from a variation of the flow velocity, are examined. The occurrence of bifurcations is detected for a flow velocity range in the case of the impulsive regimes. The coordinates of the bifurcations define a boundary between two vortex shedding modes, a boundary that verifies the critical curve obtained by Williamson & Roshko (1988). The experimental set-up of this study simulates half the wavelength of a vibrating cable, eliminates the end effects present in oscillating rigid cylinder set-up and has one of the lowest damping ratios reported for the study of this phenomenon.


1979 ◽  
Vol 64 (3) ◽  
pp. 455-457 ◽  
Author(s):  
F.E.C. Culick ◽  
K. Magiawala

2013 ◽  
Vol 275-277 ◽  
pp. 482-485
Author(s):  
Li Wei Song ◽  
Song Ping Wu

The vortex shedding modes of flow past two circular cylinders in side-by-side arrangement are investigated numerically in this paper. The simulations are carried out using a ghost cell immersed boundary method which imposes the boundary condition through reconstruction of the local velocity field near the immersed boundary. The two-dimensional unsteady incompressible Navier-Stokes equations are solved using an implicit fractional step method based on cell-center, collocated arrangement of the primary variables. Vorticity contours of the flow around the cylinders and force time histories are presented. Anti-phase and in-phase vortex shedding modes were found to exist in the flow simulation. These results of simulations were in agreement with phenomena observed in experiment and numerical results of previous researchers.


Author(s):  
Antoine Placzek ◽  
Jean-Franc¸ois Sigrist ◽  
Aziz Hamdouni

This paper is the sequel of the work exposed in a companion publication dealing with forced oscillations of a circular cylinder in a cross-flow. In the present study, oscillations of the cylinder are now directly induced by the vortex shedding process in the wake and therefore, the former model used for forced oscillations has been modified to take into account the effects of the flow in order to predict the displacement of the cylinder. The time integration of the cylinder motion is performed with an explicit staggered algorithm whose numerical damping is low. In the first part of the paper, the performances of the coupling procedure are evaluated in the case of a cylinder oscillating in a confined configuration for a viscous flow. Amplitude and frequency responses of the cylinder in a cross-flow are then investigated for different reduced velocities U* ranging from 3 to about 15. The results show a very good agreement at Re = 100 and the vortex shedding modes have also been related to the frequency response observed. Finally, some perspectives for further simulations in the turbulent regime (at Re = 1000) with structural damping are presented.


Author(s):  
Abuzar Abazari ◽  
Mehdi Alvandi ◽  
Mehdi Behzad ◽  
Krish P Thiagarajan

Multiple co-axial heave plates of uniform geometry are attached to offshore platforms for inducing damping and added mass. These effects generally decrease the magnitude of the dynamic response of the platform under applied environmental excitation forces. When spacing between heave plates is decreased the damping and added mass performance are altered due to their strong vortex interaction. A new non-uniform plate configuration is proposed that may create different hydrodynamic characteristics. The modes of vortex shedding around plate edges in a non-uniform arrangement under forced harmonic oscillation are investigated via the CFD method. Furthermore, a new simplified formula for the total theoretical added mass of a general non-uniform double disk is proposed when it is in the zone which vortex interaction take places. The results show that a non-uniform double disk has better hydrodynamic performance as compared to the uniform double configuration for a given spacing. It is also observed that the mode and direction of the vortex shedding are different for uniform and non-uniform arrangements in a given spacing and KC value.


Sign in / Sign up

Export Citation Format

Share Document