Recasting Navier-Stokes equations: Shock wave structure description

2020 ◽  
Author(s):  
S. Kokou Dadzie ◽  
M. H. Lakshminarayana Reddy
2019 ◽  
Vol 89 (1) ◽  
pp. 42
Author(s):  
Т.А. Лапушкина ◽  
А.В. Ерофеев ◽  
О.А. Азарова ◽  
О.В. Кравченко

AbstractThe interaction of a plane shock wave ( M = 5) with an ionized plasma region formed before the arrival of a shock wave by a low-current glow gas discharge is considered experimentally and numerically. In the experiment, schlieren images of a moving shock-wave structure resulting from the interaction and consisting of two discontinuities, convex in the direction of motion of the initial wave, are obtained. The propagation of a shock wave over the region of energetic impact is simulated on the basis of the two-dimensional Riemann problem of decay of an arbitrary discontinuity with allowance for the influence of horizontal walls. The systems of Euler and Navier–Stokes equations are solved numerically. The non-equilibrium of the processes in the gas-discharge region was simulated by an effective adiabatic index γ. Based on the calculations performed for equilibrium air (γ = 1.4) and for an ionized nonequilibrium gas medium (γ = 1.2), it is shown that the experimentally observed discontinuities can be interpreted as elements of the solution of the two-dimensional problem of decay of a discontinuity: a shock wave followed by a contact discontinuity. It is shown that a variation in γ affects the shape of the fronts and velocities of the discontinuities obtained. Good agreement is obtained between the experimental and calculated images of density and velocities of the discontinuities at a residual gas temperature in the gas discharge region of 373 K.


A formulation for the shock-wave structure is devised by the approximation of Boltzmann’s equation by a simpler kinetic model. Initially, the distribution function in Boltzmann’s colli­sion integral is expressed in terms of a function of deviation from local equilibrium, the magnitude of which is unrestricted, and the analysis is specialized to hard sphere molecules. A model is then derived by assigning to the deviation function the first-order term of Chapman–Enskog’s sequence which leads to Navier–Stokes equations. The model equation is shown to possess a description of a gas in a non-equilibrium state and to imply a Prandtl number value of 2/3, the formulation also containing the Bhatnagar–Gross–Krook model as a special case. In applying the kinetic model to the shock problem, the collision frequency of the loss term is replaced by a set of mean frequencies (independent of the molecular velocity) each of which characterizes a specific macroscopic quantity. The shock equations are evaluated numerically for argon employing an interation scheme that is initiated by the Navier–Stokes solution. One iteration only to the flow variables is performed. For weak shocks the iteration proves to be in very close agreement with the Navier-Stokes solution for a Prandtl number of 2/3; at higher Mach numbers, the iteration predicts a pro­gressively larger deviation, especially in the temperature profile. In addition, the density and velocity profiles exhibit a ‘kink’ at Mach numbers 5 and 10. Unlike the Navier–Stokes predictions, the results also show that for high Mach numbers the total enthalpy within the shock no longer remains sensibly constant.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


Author(s):  
Kazuomi Yamamoto ◽  
Yoshimichi Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and unsteady static pressure field predict a closed loop mechanism, in which the pressure disturbance, that is generated by the oscillation of boundary layer separation, propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier-Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the anti-phase oscillation.


2014 ◽  
Vol 16 (1) ◽  
pp. 239-263 ◽  
Author(s):  
Marcello Righi

AbstractThe implementation of a turbulent gas-kinetic scheme into a finite-volume RANS solver is put forward, with two turbulent quantities, kinetic energy and dissipation, supplied by an allied turbulence model. This paper shows a number of numerical simulations of flow cases including an interaction between a shock wave and a turbulent boundary layer, where the shock-turbulent boundary layer is captured in a much more convincing way than it normally is by conventional schemes based on the Navier-Stokes equations. In the gas-kinetic scheme, the modeling of turbulence is part of the numerical scheme, which adjusts as a function of the ratio of resolved to unresolved scales of motion. In so doing, the turbulent stress tensor is not constrained into a linear relation with the strain rate. Instead it is modeled on the basis of the analogy between particles and eddies, without any assumptions on the type of turbulence or flow class. Conventional schemes lack multiscale mechanisms: the ratio of unresolved to resolved scales – very much like a degree of rarefaction – is not taken into account even if it may grow to non-negligible values in flow regions such as shocklayers. It is precisely in these flow regions, that the turbulent gas-kinetic scheme seems to provide more accurate predictions than conventional schemes.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550019 ◽  
Author(s):  
A. Kuzmin

2D and 3D transonic flows in a channel of variable cross-section are studied numerically using a solver based on the Reynolds-averaged Navier–Stokes equations. The flow velocity is supersonic at the inlet and outlet of the channel. Between the supersonic regions, there is a local subsonic region whose upstream boundary is a shock wave, whereas the downstream boundary is a sonic surface. The sonic surface gives rise to an instability of the shock wave position in the channel. Computations reveal a hysteresis in the shock position versus the inflow Mach number. A dependence of the hysteresis on the velocity profile given at the inlet is examined.


Sign in / Sign up

Export Citation Format

Share Document