Two-oscillator mapping modification of the Poisson bracket mapping equation formulation of the quantum–classical Liouville equation

2020 ◽  
Vol 153 (21) ◽  
pp. 214103
Author(s):  
Hyun Woo Kim ◽  
Young Min Rhee

2014 ◽  
Vol 141 (12) ◽  
pp. 124107 ◽  
Author(s):  
Hyun Woo Kim ◽  
Weon-Gyu Lee ◽  
Young Min Rhee




Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.



2021 ◽  
Vol 380 ◽  
pp. 107606
Author(s):  
Juncheng Wei ◽  
Lei Zhang
Keyword(s):  


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.



Author(s):  
Benjamin D. Goddard ◽  
Tim D. Hurst ◽  
Mark Wilkinson

The Liouville equation is of fundamental importance in the derivation of continuum models for physical systems which are approximated by interacting particles. However, when particles undergo instantaneous interactions such as collisions, the derivation of the Liouville equation must be adapted to exclude non-physical particle positions, and include the effect of instantaneous interactions. We present the weak formulation of the Liouville equation for interacting particles with general particle dynamics and interactions, and discuss the results using two examples.



Sign in / Sign up

Export Citation Format

Share Document