scholarly journals Dynamic modeling and transient analysis of a recompression supercritical CO2 Brayton cycle

2020 ◽  
Author(s):  
Pan Zhou ◽  
Jinyi Zhang ◽  
Yann Le Moullec
2018 ◽  
Author(s):  
Zijiang Yang ◽  
Yann Le Moullec ◽  
Jinyi Zhang ◽  
Yijun Zhang

Author(s):  
Seong Jun Bae ◽  
Yoonhan Ahn ◽  
Hong-Sik Lim ◽  
Jae Eun Cha ◽  
Jeong Ik Lee

The CO2 compressor control is one of the most important issues to operate a Supercritical CO2 (S-CO2) Brayton cycle with a high thermal efficiency because it is operated near the critical point to reduce the compressing work. Therefore, our research team has accumulated the CO2 compressor data from the S-CO2 compressor test facility called SCO2PE (Supercritical CO2 Pressurizing Experiment). The data can be obtained under various compressor inlet conditions, especially near the critical point of CO2. Despite the growing interest in the S-CO2 Brayton cycle, research on the cycle transient analysis, especially in case of CO2 compressor inlet condition variation, is still in its early stage. So, in this study, the validation and verification of the gas system transient analysis code GAMMA+ is carried out by utilizing the experimental data of SCO2PE. To simulate the SCO2PE by the GAMMA+ code, the code was revised to reflect the compressor performance and add an expansion valve option. Moreover, the NIST database was connected to the GAMMA+ code for more accurate CO2 properties near the critical point. Prior to the transient analysis with the whole SCO2PE loop, major components such as a compressor and a heat exchanger were separately tested with the steady state data of SCO2PE. The loss of cooling water accident was assumed as the transient situation by observing the operating condition variations of the SCO2PE while the mass flow rate of water loop was decreased. Thus, the experimental data of SCO2PE was compared with the revised GAMMA+ code under the planned transient.


2022 ◽  
Vol 253 ◽  
pp. 115184
Author(s):  
Yang Ming ◽  
Kai Liu ◽  
Fulong Zhao ◽  
Huawei Fang ◽  
Sichao Tan ◽  
...  

Author(s):  
Qiuwan Du ◽  
Yuqi Wang ◽  
Di Zhang ◽  
Yonghui Xie

Radial-inflow turbine is a core component in supercritical CO2 (SCO2) Brayton cycle. The leakage from the nozzle outlet towards the impeller back brings a great challenge to the efficiency and security of the power system. In this paper, the labyrinth seal (LS) and dry gas seal (DGS) are arranged on the impeller back of a SCO2 radial-inflow turbine and the influence on the comprehensive performance is investigated. Results demonstrate that both LS and DGS configurations can significantly reduce leakage of the impeller back and DGS configuration performs better. Compared with the configuration without leakage, the power and efficiency of DGS configuration are only reduced by 0.27% and 0.35% respectively. The seal clearance and the inlet width have a greater effect on LS configuration. The thermo-mechanical seal deformation values of DGS configurations are all less than 8 μm, which verifies the feasibility. Finally, a novel combined seal configuration with both LS and DGS is proposed and excellent performance is achieved, providing a potential approach for the sealing problem of SCO2 radial-inflow turbine.


Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


2019 ◽  
Vol 158 ◽  
pp. 339-344 ◽  
Author(s):  
Liang Teng ◽  
Yimin Xuan

2021 ◽  
Author(s):  
Karin Astrid Senta Edel ◽  
František Hrdlička ◽  
Václav Novotný

As part of the change towards a higher deployment of renewable energy sources, which naturally deliver energy intermittently, the need for energy storage systems is increasing. For compensation of disturbance in power production due to inter-day to seasonal weather changes, long-term energy storage is required. In the spectrum of storage systems, one out of a few geographically independent possibilities is the storage of electricity in heat, so-called Carnot-Batteries. This paper presents a Pumped Thermal Energy Storage (PTES) system based on a recuperated supercritical CO2 Brayton cycle. The modelled system provides a round-trip efficiency of 38.9%.


Sign in / Sign up

Export Citation Format

Share Document