IoT based wireless sensor nodes for water quality monitoring

2021 ◽  
Author(s):  
Sujaya Das Gupta ◽  
M. S. Zambare ◽  
A. D. Shaligram
2020 ◽  
Vol 12 (19) ◽  
pp. 3131
Author(s):  
Gazi M. E. Rahman ◽  
Khan A. Wahid

IoT (Internet of Things)-based remote monitoring and controlling applications are increasing in dimensions and domains day by day. Sensor-based remote monitoring using a Wireless Sensor Network (WSN) becomes challenging for applications when both temporal and spatial data from widely spread sources are acquired in real time. In applications such as environmental, agricultural, and water quality monitoring, the data sources are geographically distributed, and have little or no cellular connectivity. These applications require long-distance wireless or satellite connections for IoT connectivity. Present WSNs are better suited for densely populated applications and require a large number of sensor nodes and base stations for wider coverage but at the cost of added complexity in routing and network organization. As a result, real time data acquisition using an IoT connected WSN is a challenge in terms of coverage, network lifetime, and wireless connectivity. This paper proposes a lightweight, dynamic, and auto-reconfigurable communication protocol (LDAP) for Wide-Area Remote Monitoring (WARM) applications. It has a mobile data sink for wider WSN coverage, and auto-reconfiguration capability to cope with the dynamic network topology required for device mobility. The WSN coverage and lifetime are further improved by using a Long-Range (LoRa) wireless interface. We evaluated the performance of the proposed LDAP in the field in terms of the data delivery rate, Received Signal Strength (RSS), and Signal to Noise Ratio (SNR). All experiments were conducted in a field trial for a water quality monitoring application as a case study. We have used both static and mobile data sinks with static sensor nodes in an IoT-connected environment. The experimental results show a significant reduction (up to 80%) of the number of data sinks while using the proposed LDAP. We also evaluated the energy consumption to determine the lifetime of the WSN using the LDAP algorithm.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1096 ◽  
Author(s):  
Ramón Martínez ◽  
Nuria Vela ◽  
Abderrazak el Aatik ◽  
Eoin Murray ◽  
Patrick Roche ◽  
...  

The deteriorating water environment demands new approaches and technologies to achieve sustainable and smart management of urban water systems. Wireless sensor networks represent a promising technology for water quality monitoring and management. The use of wireless sensor networks facilitates the improvement of current centralized systems and traditional manual methods, leading to decentralized smart water quality monitoring systems adaptable to the dynamic and heterogeneous water distribution infrastructure of cities. However, there is a need for a low-cost wireless sensor node solution on the market that enables a cost-effective deployment of this new generation of systems. This paper presents the integration to a wireless sensor network and a preliminary validation in a wastewater treatment plant scenario of a low-cost water quality monitoring device in the close-to-market stage. This device consists of a nitrate and nitrite analyzer based on a novel ion chromatography detection method. The analytical device is integrated using an Internet of Things software platform and tested under real conditions. By doing so, a decentralized smart water quality monitoring system that is conceived and developed for water quality monitoring and management is accomplished. In the presented scenario, such a system allows online near-real-time communication with several devices deployed in multiple water treatment plants and provides preventive and data analytics mechanisms to support decision making. The results obtained comparing laboratory and device measured data demonstrate the reliability of the system and the analytical method implemented in the device.


2019 ◽  
Vol 8 (3) ◽  
pp. 6174-6179

This study presents the design and development of a precision fishing technology utilized in water quality monitoring with phytoremediation system using a Zigbee-based Wireless Sensor Network. The system afforded a real-time water quality monitoring using multiple sensors spatially deployed. The sensor node implemented in the Wireless Sensor Network to perform data sensing utilities with the water quality parameters including the water temperature, pH level, water dissolved oxygen and the water level during high-tide and low-tide. During the development, a P89V51RD2 microcontroller, ZigBee module with IEEE 802.15.4 standard, and radio frequency (RF) transceiver were utilized. The developed precision fishing technology utilized the Internet of Things architecture. The IoT device layer includes the temperature sensor, pH sensor, dissolved oxygen sensor, and the water level sensor. Phytoremediation was also used as an alternative solution for soil and water remediation. Further studies using recent and advanced remote sensing technologies and IoT-based solutions can be developed to address issues in the primary sector of the economy.


Sign in / Sign up

Export Citation Format

Share Document