Study of material selection and design improvement for a portable blender by using finite element analysis

2021 ◽  
Author(s):  
R. M. Farizuan ◽  
A. R. Irfan ◽  
H. Radhwan ◽  
Shafeeq Ahmad Shamim Ahmad ◽  
Khoo Kin Fai ◽  
...  
2021 ◽  
Vol 238 ◽  
pp. 109771
Author(s):  
Lin Xu ◽  
Navid Kharghani ◽  
Mengzhen Li ◽  
C. Guedes Soares

Author(s):  
Y N Kharakh ◽  
A E Krupnin ◽  
D A Gribov ◽  
F D Sorokin ◽  
L G Kirakosyan ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 2125-2129
Author(s):  
Zhi Ying Song ◽  
Jian Yang Zhao ◽  
Rui Qing Jia

This paper focuses on materials selection and finite element analysis for flameproof enclosure of mine exploration robot. The internal environment of abandoned mine is unknown, thus the robot must be designed explosion proof. This research deals with a safe solution to environment exploration for abandoned mines by using mine exploration robot. Modeling by using 3D software and finite element analysis verifies whether enclosure strength satisfies requirements. It will provide a reference for the development of mine exploration robot.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 214-220
Author(s):  
Mohd Nasri Ishak ◽  
Abd Rahim Abu Talib ◽  
Mohammad Yazdi Harmin

Current design of safety syringes requires two handed operation and additional processes which is not similar to the normal syringes. Due to this concern, a new design of safety syringe is introduced in order to produce a safety syringe which allows a single-handed operation and similar to the operation of a normal syringes. This paper presents the material selection process and design analysis of a newly devel-oped multi-purpose disposable safety syringe. Based on the design analysis, the force which needed to dismantle the nozzle is found to be 20 N and this value is practical for the end users. The finite element analysis had also shown that the design concept is safe and has safety feature for the user to use. In addition, copolymer is proven as the best material selection for safety syringe production.


Author(s):  
Wei Zhang ◽  
Anil Erol ◽  
Saad Ahmed ◽  
Sarah Masters ◽  
Paris von Lockette ◽  
...  

Active origami designs, which incorporate smart materials such as electroactive polymers (EAPs) and magnetoactive elastomers (MAEs) into mechanical structures, have shown good promise in engineering applications. In this study, finite element analysis (FEA) models are developed using COMSOL Multiphysics software for two configurations that incorporate a combination of active and passive material layers, namely: 1) a single-notch unimorph folding configuration actuated using only external electric field and 2) a bimorph configuration which is actuated using both electric and magnetic (i.e. multifield) stimuli. Constitutive relations are developed for both electrostrictive and magnetoactive materials to model the coupled behaviors directly. Shell elements are adopted for their capacity of modeling thin films, reduction of computational cost and ability to model the intrinsic coupled behaviors in the active materials under consideration. A microstructure-based constitutive model for electromechanical coupling is introduced to capture the nonlinearity of the EAP’s relaxor ferroelectric response; the electrostrictive coefficients are then used as input in the constitutive modeling of the coupled behavior. The magnetization of the MAE is measured by experiment and then used to calculate magnetic torque under specified external magnetic field. The objective of the study is to verify the effectiveness of the constitutive models to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data, which is a good validation of the shell models. By investigating the impact of material selection, location, and geometric parameters, FEA can be used in design, reducing trial-and-error iterations in experiments.


2011 ◽  
Vol 199-200 ◽  
pp. 579-582 ◽  
Author(s):  
Ju Yan Liu ◽  
Zhi Xia He ◽  
Qian Wang ◽  
Yun Long Huang

The high pressure common rail injection System is one of the most advanced technologies for the diesel engine to reduce fuel consumption exhaust emissions. While the design of the high pressure common rail injector is the key for the whole system. Considering that the working pressure of fuel in the injector, a more accurate injector body model was established with the modeling software Pro/Engineer in this study. Finite element analysis technology in Ansys software was applied to calculate the strength of injector body of the high pressure common rail system under different injection pressures. And then the rationality of structure parameters and material selection of the injector body can be analyzed and verified. The research conclusions can provide the theoretical basis for the optimization design of the injector.


2015 ◽  
Author(s):  
Qi Wang ◽  
Ji Zeng ◽  
Yong Yang

The self-elevating drilling units are widely used in the offshore industry for oil and gas exploration. The drill floor structure is the main part of the drilling package for a self-elevating drilling unit due to its key function. Its structural strength checking is of great significance on account of the special structure features and the complex combined loading conditions it suffers. The sufficient structural strength of the drill floor is the base and guarantee for safe drilling and extraction. The finite element method was applied to calculate the structural strength of the drill floor directly considering different load cases which was the combination of environmental loads, permanent loads, variable function loads, and reaction forces from structures and equipments. Total forty load cases were set in the finite element analysis. A detailed finite element model without simplification of the drill floor was built correctly so that it can show the accurate stiffness of the real structure. Based on this model, the design method and the design criterion of the drill floor were described in detail. The environmental loads were calculated according to ABS MODU rules. The influence of the direction of the environmental loads on the drill floor were studied and concluded. Since the drill floor was not just welding with the cantilever beam, the boundary conditions were also particularly introduced owning to the complex connection between them. After finite element analysis and calculation, the stress distribution of the whole drill floor which includes the main girders and derrick supports were obtained. The locations with high stress were found so those places should be paid more attention. The curves which show the stress variation according to the environment loading direction were drawn and their characteristics were found. The load case and the load which have the main effect on drill floor structure were found. As a result, the suggestions for design improvement were put forward for the structural design, and the finite element analysis was run again to test and verify the design improvement. This paper can provide meaningful guidance for the future design of the drill floor.


2021 ◽  
Vol 5 (2) ◽  
pp. 83
Author(s):  
Ilham Taufik Maulana ◽  
Ahmad Zohari ◽  
Adik Susilo Wardoyo ◽  
Pilar Adhana Heryanto

<p><em>In manufacturing technology, accuracy, effectiveness, and efficiency are important factors because the use of technology is expected to maximize quality and quantity with existing resources. The manufacturing process is the process of making products starting with the selection of raw materials and the machining process following the design to suit the needs. In other words, design is the main thing before carrying out manufacturing activities. Meanwhile, in designing a machine, it is necessary to have a material selection procedure according to the application conditions. The strength of the material can be obtained by simulating it using the Finite Element Analysis (FEA) method. This simulation aims to determine the maximum safe load limit on the tool frame design. In this study, the design of the tool frame made was given 5 loading treatments, the minimum loading was 50kg and the maximum loading was 200kg. Based on the simulation results, the maximum safety factor occurs at 50 kg loading of 10,019 ul and the minimum safety factor occurs at 200 kg loading with a value of 3.60064 ul. Based on the analysis of the load given to the frame of the compact press and sintering tool that the designed tool is safe.</em></p>


2019 ◽  
Vol 6 (2) ◽  
pp. d9-d13 ◽  
Author(s):  
M. D. Kumar ◽  
P. S., Teja ◽  
R. Krishna ◽  
M. Sreenivasan

Compliance with the rules and regulations of competition “Student Formula Car Racing” that conducted annually by the ‘Society of Automotive Engineers’ (SAE) India, the car frame must be designed and built with supreme priority. The major task posed is to design and fabricate a light weighed vehicle chassis frame without compensating the safety. This paper boards various methods of material selection, technical design optimization and Finite Element Analysis using ANSYS. The basic design is based on the anthropological study data of the specified human (95th percentile male) al-lowing fast ‘way-in’ and ‘way-out’ access from the car. According to the rules book specification on material selection, AISI 4130 chromoly steel was the first time identified for the frame design. Resulting in the final design of the vehicle frame, various analyses were done using ANSYS and the successive results are plotted and discussed. The entire design optimization and simulation analysis are based on the 2019 Formula SAE rules book. Keywords: finite element analysis, AISI 4130 chromoly steel, frame construction, Society of Automotive Engineers.


Sign in / Sign up

Export Citation Format

Share Document