Finite Element Analysis of High-Pressure Common-Rail Injector Body

2011 ◽  
Vol 199-200 ◽  
pp. 579-582 ◽  
Author(s):  
Ju Yan Liu ◽  
Zhi Xia He ◽  
Qian Wang ◽  
Yun Long Huang

The high pressure common rail injection System is one of the most advanced technologies for the diesel engine to reduce fuel consumption exhaust emissions. While the design of the high pressure common rail injector is the key for the whole system. Considering that the working pressure of fuel in the injector, a more accurate injector body model was established with the modeling software Pro/Engineer in this study. Finite element analysis technology in Ansys software was applied to calculate the strength of injector body of the high pressure common rail system under different injection pressures. And then the rationality of structure parameters and material selection of the injector body can be analyzed and verified. The research conclusions can provide the theoretical basis for the optimization design of the injector.

2021 ◽  
Author(s):  
R. M. Farizuan ◽  
A. R. Irfan ◽  
H. Radhwan ◽  
Shafeeq Ahmad Shamim Ahmad ◽  
Khoo Kin Fai ◽  
...  

2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


Author(s):  
Zhenbo Gao ◽  
Yong Zhang ◽  
Dandan Wang

Plunger pair is the key component of high pressure common rail injector and its sealing performance is very important. Therefore, it is of great significance to study the leakage mechanism of plunger pair. Under static condition, the high-pressure fuel flow in the gap of the plunger pair caused the deformation of the plunger pair structure and the temperature rise of fuel. For a more comprehensive and accurate study, the effect of deformation, including elastic deformation and thermal expansion, the physical properties of fuel, including density, viscosity and specific heat capacity, as well as the influence of plunger posture in the plunger sleeve, including concentric, eccentric, and inclination condition, are considered in this paper. Firstly, the mathematical models including Reynolds equation, film thickness equation, non-isothermal flow equation, parametric equation of fuel physical property, and section velocity equation are established. The numerical analysis based on finite difference method for the solution of these models is given, which can simultaneously solve for the fuel film pressure distribution, temperature distribution, thickness distribution, distribution of fuel physical properties, and leakage rate. The models are validated by comparing the calculated leakage rates with the measurements. The effects under different posture of plunger are discussed too. Some of the conclusions provided good guidance for the design of high-pressure common rail injector.


Author(s):  
Edric Wee Ming Wong ◽  
Choo Jun Tan ◽  
Jenn Hwai Leong ◽  
Syauqina Akmar Mohd-Shafri ◽  
Dahaman Ishak ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Sign in / Sign up

Export Citation Format

Share Document