Photo-dissociation mechanism of trifluoroacetyl chloride in the gas phase: AIMS dynamic simulations

2021 ◽  
Vol 154 (24) ◽  
pp. 244303
Author(s):  
Yuxia Hao ◽  
Lihong Liu ◽  
Wei-Hai Fang
2019 ◽  
Vol 15 ◽  
pp. 2355-2368 ◽  
Author(s):  
Ronja Driller ◽  
Daniel Garbe ◽  
Norbert Mehlmer ◽  
Monika Fuchs ◽  
Keren Raz ◽  
...  

CotB2 catalyzes the first committed step in cyclooctatin biosynthesis of the soil bacterium Streptomyces melanosporofaciens. To date, CotB2 represents the best studied bacterial diterpene synthase. Its reaction mechanism has been addressed by isoptope labeling, targeted mutagenesis and theoretical computations in the gas phase, as well as full enzyme molecular dynamic simulations. By X-ray crystallography different snapshots of CotB2 from the open, inactive, to the closed, active conformation have been obtained in great detail, allowing us to draw detailed conclusions regarding the catalytic mechanism at the molecular level. Moreover, numerous alternative geranylgeranyl diphosphate cyclization products obtained by CotB2 mutagenesis have exciting applications for the sustainable production of high value bioactive substances.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


1980 ◽  
Vol 77 ◽  
pp. 705-718 ◽  
Author(s):  
Sydney Leach ◽  
Gérald Dujardin ◽  
Guy Taieb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document