Inertia-enhancement effect of divergent flow on the force characteristics of a Bernoulli gripper

2021 ◽  
Vol 33 (5) ◽  
pp. 057108
Author(s):  
Xubo Yu ◽  
Xin Li
1981 ◽  
Vol 24 (4) ◽  
pp. 520-525 ◽  
Author(s):  
Bruce L. Plakke ◽  
Daniel J. Orchik ◽  
Daniel S. Beasley

Binaural auditory fusion of 108 children (4, 6, and 8 years old) was studied using three lists of monosyllabic words (WIPI) presented at two sensation levels (30 and 40 dB). The words were processed to produce three bandwidth conditions (100, 300, 600 Hz) and were administered via three presentation modes (binaural fusion 1, diotic, binaural fusion 2). Results showed improved discrimination scores with increasing age, sensation level, and filter bandwidth. Diotic scores were better than binaural fusion scores for the narrower bandwidth conditions, but the diotic enhancement effect was seriously compromised in the widest bandwidth (600 Hz) condition. The results confirmed the contention that prior research results were equivocal due, in large measure, to procedural variability. Methods for reducing such variability and enhancing the clinical viability of binaural fusion tasks are suggested.


2019 ◽  
Vol 47 (2) ◽  
pp. 118-140
Author(s):  
Artem Kusachov ◽  
Fredrik Bruzelius ◽  
Mattias Hjort ◽  
Bengt J. H. Jacobson

ABSTRACT Commonly used tire models for vehicle-handling simulations are derived from the assumption of a flat and solid surface. Snow surfaces are nonsolid and may move under the tire. This results in inaccurate tire models and simulation results that are too far from the true phenomena. This article describes a physically motivated tire model that takes the effect of snow shearing into account. The brush tire model approach is used to describe an additional interaction between the packed snow in tire tread pattern voids with the snow road surface. Fewer parameters and low complexity make it suitable for real-time applications. The presented model is compared with test track tire measurements from a large set of different tires. Results suggest higher accuracy compared with conventional tire models. Moreover, the model is also proven to be capable of correctly predicting the self-aligning torque given the force characteristics.


1999 ◽  
Author(s):  
Neil R. Garrigan ◽  
Albert Storace ◽  
Wen L. Soong ◽  
Thomas A. Lipo ◽  
Charles M. Stephens

2020 ◽  
Vol 21 (4) ◽  
pp. 298-304
Author(s):  
Chih-Wen Fang ◽  
Ling-Chun Tsai ◽  
Yaw-Syan Fu ◽  
Ting-Yu Cheng ◽  
Pao-Chu Wu

Objective: The aim of the present study was to design nanocarriers for the topical application of rivastigmine. Methods: The effect of cosurfactants, hydrophilic gel and loading amount on the permeability of rivastigmine through rat skin was evaluated. Skin irritation tests and stability tests were performed to evaluate the utility of tested formulations. Results: The results showed that the microemulsion formation and characteristics of drug-loaded formulations were related to many parameters of the components. When using microemulsion systems as a vehicle, the permeation rate remarkably increased about 13.2~24.3-fold and the lag time was significantly shortened from 24 h to 4.7 h. Formulations containing a cosurfactant of Diethylene Glycol Monobutyl Ether (DEGBE) showed higher enhancement effect, while increasing the loading dose from 0.5% to 5% further increased the flux about 2.1-fold and shortened the lag time. Conclusion: The drug-loaded experimental formulation did not cause skin irritation and had good stability at 20ºC and 40ºC storage for at least 3 months. The result showed that gel-based microemulsion formulation could be a promising approach for topical administration.


2005 ◽  
Vol 108-109 ◽  
pp. 181-186 ◽  
Author(s):  
Valentin V. Emtsev ◽  
Boris A. Andreev ◽  
Gagik A. Oganesyan ◽  
D.I. Kryzhkov ◽  
Andrzej Misiuk ◽  
...  

Effects of compressive stress on oxygen agglomeration processes in Czochralski grown silicon heat treated at T= 450OC, used as a reference temperature, and T= 600OC to 800OC are investigated in some detail. Compressive stresses of about P= 1 GPa lead to enhanced formation of Thermal Double Donors in materials annealed over a temperature range of T= 450OC – 600OC. It has been shown that the formation of thermal donors at T= 450OC under normal conditions and compressive stress is accompanied with loss of substitutional boron. In contrast, the concentration of the shallow acceptor states of substitutional boron in silicon annealed under stress at T≥ 600OC remains constant. An enhancement effect of thermal donor formation is gradually weakened at T≥ 700OC. The oxygen diffusivity sensitive to mechanical stress is believed to be responsible for the observed effects in heat-treated silicon.


Sign in / Sign up

Export Citation Format

Share Document