scholarly journals Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors

APL Materials ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 091113
Author(s):  
Taehwan Lim ◽  
Huanan Zhang ◽  
Sohee Lee

In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


2016 ◽  
Vol 22 (4) ◽  
Author(s):  
Šarūnas MEŠKINIS ◽  
Iryna YAREMCHUK ◽  
Viktoras GRIGALIŪNAS ◽  
Andrius VASILIAUSKAS ◽  
Arvydas ČIEGIS

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yewon Song ◽  
Seulah Lee ◽  
Yuna Choi ◽  
Sora Han ◽  
Hyuna Won ◽  
...  

AbstractThe wearable electronics integrated with textile-based devices is a promising strategy to meet the requirements of human comfort as well as electrical performances. This research presents a design and development framework for a seamless glove sensor system using digital knitting fabrication. Based on the performance requirements of glove sensors for controlling a prosthetic hand, desirable design components include electrical conductivity, comfort, formfit, electrical sensitivity, and customizable design. These attributes are determined and achieved by applying appropriate materials and fabrication technologies. In this study, a digital knitting CAD/CAM system is utilized to meet the desired performance criteria, and two prototypes of the seamless glove sensor systems are successfully developed for the detection of both human and robotic finger motions. This digital knitting system will provide considerable potential for customized design development as well as a sustainable production process. This structured, systematic approach could be adapted in the future development of wearable electronic textile systems.


2021 ◽  
Vol 11 (9) ◽  
pp. 3914
Author(s):  
Chi-Wai Kan ◽  
Yin-Ling Lam

Smart wearable textiles can sense, react, and adapt themselves to external conditions or stimuli, and they can be divided into active and passive smart wearable textiles, which can work with the human brain for cognition, reasoning, and activating capacity. Wearable technology is among the fastest growing parts of health, entertainment, and education. In the future, the development of wearable electronics will be focused on multifunctional, user-friendly, and user acceptance and comfort features and shall be based on advanced electronic textile systems.


2016 ◽  
Vol 84 ◽  
pp. 281-288 ◽  
Author(s):  
Gownolla Malegowd Raghavendra ◽  
Jeyoung Jung ◽  
Dowan kim ◽  
Jongchul Seo

Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 12969-12975 ◽  
Author(s):  
Xiang Fei ◽  
Tao Lu ◽  
Jun Ma ◽  
Shenmin Zhu ◽  
Di Zhang

Photonic crystals with both optical and thermal responses based on a natural butterfly wing template.


Sign in / Sign up

Export Citation Format

Share Document