scholarly journals Absorbance spectroscopy of light scattering samples placed inside an integrating sphere for wide dynamic range absorbance measurement

2021 ◽  
Vol 92 (12) ◽  
pp. 123103
Author(s):  
Ayaka Mori ◽  
Kyohei Yamashita ◽  
Yunosuke Tabata ◽  
Keisuke Seto ◽  
Eiji Tokunaga
Author(s):  
John R. D. Hervey ◽  
Paolo Bombelli ◽  
David J. Lea-Smith ◽  
Alan K. Hulme ◽  
Nathan R. Hulme ◽  
...  

AbstractAbsorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instruments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml−1 titanium dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar (1–4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrating sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, suitable for any dual-beam spectrophotometer.


2019 ◽  
Vol 39 (6) ◽  
pp. 0612006
Author(s):  
张梦雅 Mengya Zhang ◽  
袁银麟 Yinlin Yuan ◽  
翟文超 Wenchao Zhai ◽  
孟凡刚 Fangang Meng ◽  
夏茂鹏 Maopeng Xia ◽  
...  

2017 ◽  
Vol 37 (9) ◽  
pp. 0904001
Author(s):  
刘 辉 Liu Hui ◽  
陈洪耀 Chen Hongyao ◽  
司孝龙 Si Xiaolong ◽  
张黎明 Zhang Liming

Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


2020 ◽  
Vol 13 (5) ◽  
pp. 1085-1093
Author(s):  
XU Da ◽  
◽  
YUE Shi-xin ◽  
ZHANG Guo-yu ◽  
SUN Gao-fei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document