Diagnosis and analysis of laser induced plasma parameters for silicon carbide produced by Nd:YAG laser

2021 ◽  
Author(s):  
Kadhim A. Aadim ◽  
Madyan A. Khalafand ◽  
Wassan D. Hussain
Author(s):  
Nisreen Kh. Abdalameer ◽  
Sabah N. Mazhir

This paper investigates the spectroscopy of plasma that resulted from the bombardment of ZnSe by using the optical emission spectroscopic (OES) technique. The plasma can be generated by the reaction between an Nd:YAG laser, with a wavelength of 1064[Formula: see text]nm with a repeat rate of 6[Formula: see text]Hz (as well as 9[Formula: see text]ns pulse duration), and a solid target, where the density of the electron (ne), the temperature of the electron ([Formula: see text]), the frequency of the plasma ([Formula: see text]) and the Debye length ([Formula: see text]) as plasma parameters, in addition to the particles’ number of Debye ([Formula: see text]) and plasma parameter ([Formula: see text]) have been calculated by picking up the spectrum of plasma at different energies (100, 200, 300, 400, 500) mj using Selenium (Se), Zinc (Zn) and the mixture (ZnSe) at ([Formula: see text]). It is found that the electron temperatures of Zn and Se ranged between (0.257–0.267)[Formula: see text]eV and (1.036–1.055) eV, respectively, while that of ZnSe ranged between (1.15–1.28)[Formula: see text]eV. This indicates that the electron temperature of ZnSe is higher than the temperatures of each Zn and Se.


2021 ◽  
pp. 2948-2955
Author(s):  
Maryam M. Shehab ◽  
Kadhim A. Aadim

      In this paper, the optical emission spectrum (OES) technique was used to analyze the spectrum resulting from the (CdO:CoO)  plasma in air, produced by Nd:YAG laser with λ=1064 nm, τ=10 ns, a focal length of 10 cm, and a range of energy of 200-500 mJ. We identified laser-induced plasma parameters such as electron temperature (Te) using Boltzmann plot method, density of electron (ne), length of Debye (λD), frequency of plasma (fp), and number of Debye (ND), using two-Line-Ratio method. At a mixing ratio of X= 0.5, the (CdO:CoO) plasma spectrum was recorded for different energies. The results of plasma parameters caused by laser showed that, with the increase in laser energy, the values of Te, ne and fp were increased, while the value of λD was decreased. The calculated electron temperature value was in the range of 0.449-0.619 eV at ratio X=0.5


2012 ◽  
Vol 516 ◽  
pp. 36-41 ◽  
Author(s):  
Takayuki Hirano ◽  
Yasuhiro Okamoto ◽  
Akira Okada ◽  
Yoshiyuki Uno ◽  
Tomokazu Sakagawa ◽  
...  

Precision micro-machining without crack and heat affected zones is required in order to use high-performance materials such as silicon and silicon carbide, and it is expected that the higher harmonics of the Nd:YAG laser can perform precision micro-machining due to its high photon energy. However, even by using the harmonics of the Nd:YAG laser, a heat affected zone is inevitable due to the plasma generation. In order to reduce the influence of plasma on the processing results, it is important to understand the generation mechanism of plasma. Therefore, the laser induced plasma in micro-drilling of silicon carbide was observed by a high-speed shutter camera, and the influence of laser wavelength and surrounding conditions on the machining characteristics were experimentally investigated. The removal depth increased with decreasing wavelength and the surrounding gas pressure. The surface integrity was improved by the combination of shorter wavelength and reduced pressure conditions. The behavior of laser induced plasma was different from the wavelength of the laser beam and the surrounding gas pressure. Under atmospheric pressure conditions, the plasma grew greatly and affected the wider surface around the drilled hole with increasing wavelength. Under reduced pressure conditions, there was little difference in plasma size by wavelength, and the affected zone around the drilled hole became relatively smaller. It became clear that a low surrounding gas pressure and shorter wavelength were important to obtain better surface integrity and highly efficient processing.


2018 ◽  
Vol 148 ◽  
pp. 205-210 ◽  
Author(s):  
Andrey M. Popov ◽  
Sergey M. Zaytsev ◽  
Irina V. Seliverstova ◽  
Alexander S. Zakuskin ◽  
Timur A. Labutin

2004 ◽  
Vol 818 ◽  
Author(s):  
H. Kawasaki ◽  
Y. Suda ◽  
T. Ohshima ◽  
T. Ueda ◽  
S. Nakashima

AbstractWe have developed a new pulsed laser deposition technique using two Nd:YAG laser beams for the nucleation of silicon carbide (SiC) crystalline nano-particles and single crystalline SiC thin films. Transmission electron microscopy and atomic force microscopy observation suggest that several nanometer size SiC particles can be prepared by the new pulsed laser deposition (PLD) method using two Nd:YAG laser beams (1064nm and 532nm). X ray photoelectron spectroscopy measurements suggest that the silicon/carbon composition ratio of the prepared SiC thin films can be controlled by laser fluence and wavelength.


Atoms ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Maja S. Rabasovic ◽  
Mihailo D. Rabasovic ◽  
Bratislav P. Marinkovic ◽  
Dragutin Sevic

We describe a streak camera system that is capable of both spatial and spectral measurements of laser-induced plasma. The system is based on a Hamamatsu C4334 streak camera and SpectraPro 2300i spectrograph. To improve the analysis of laser-induced plasma development, it is necessary to determine the timing of laser excitation in regard to the time scale on streak images. We present several methods to determine the laser signal timing on streak images—one uses the fast photodiode, and other techniques are based on the inclusion of the laser pulse directly on the streak image. A Nd:YAG laser (λ = 1064 nm, Quantel, Brilliant B) was employed as the excitation source. The problem of synchronization of the streak camera with the Q-switched Nd:YAG laser is also analyzed. A simple modification of the spectrograph enables easy switching between the spectral and spatial measurement modes.


Sign in / Sign up

Export Citation Format

Share Document