Effect of Hydrogen Bond Donor Molecules Ethylene Glycerol and Lactic Acid on Electrochemical Interfaces in Choline Chloride Based-Deep Eutectic Solvents

Author(s):  
Jiedu Wu ◽  
Shuai Liu ◽  
Zhuo Tan ◽  
Yuting Guo ◽  
Jian-Zhang Zhou ◽  
...  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation. Results Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars as high as 53.5 g L−1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU g−1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g L−1 and 706 g kg−1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g L−1 was achieved with butanol yield of 137 g kg−1 pretreated corncob by Clostridium saccharobutylicum DSM13864. Conclusions Ethylamine and lactic acid-based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Rima J. Isaifan ◽  
Abdukarem Amhamed

In the recent past few years, deep eutectic solvents (DESs) were developed sharing similar characteristics to ionic liquids but with more advantageous features related to preparation cost, environmental impact, and efficiency for gas separation processes. Amongst many combinations of DES solvents that have been prepared, reline (choline chloride as the hydrogen bond acceptor mixed with urea as the hydrogen bond donor) was the first DES synthesized and is still the one with the lowest melting point. Choline chloride/urea DES has proven to be a promising solvent as an efficient medium for carbon dioxide capture when compared with amine alone or ionic liquids under the same conditions. This review sheds light on the preparation method, physical and chemical characteristics, and the CO2 absorption capacity of choline chloride/urea DES under different temperatures and pressures reported up to date.


2021 ◽  
Vol 10 (1) ◽  
pp. 666-676
Author(s):  
Veronika Majová ◽  
Michal Jablonský ◽  
Marek Lelovský

Abstract The processing of lignocellulosic materials is very limited because of their low solubility in water and some organic solvents. Fifteen ternary deep eutectic solvents (DESs) were prepared and tested as solvents suitable for delignification of unbleached pulp. The selected ternary DESs are composed of quaternary ammonium salts and amino acids as hydrogen-bond acceptors, and organic acids and polyvalent alcohols as hydrogen bond donors, with molar ratios varying for the individual components. The delignification efficiency is significantly influenced by the degree of penetration of the solvent into the pulp fibre structure. Therefore, the density and viscosity analysis of individual solvents was performed. Unbleached beech pulp with initial kappa number 13.9 was treated with the prepared DESs. The kappa number indicates the residual lignin content or the bleachability of pulp. The efficiency of the solvents ranged from 1.4% to 28.1%. The most suitable for the pretreatment of fibres, based on lignin removal efficiency, were found to be three DESs, in the following order: malonic acid/choline chloride/1,3-propanediol (1:1:3) > choline chloride/acetamide/lactic acid (1:2:3) > choline chloride/urea/lactic acid (1:2:3).


Author(s):  
Gustavo Gomes ◽  
Renan Mattioli ◽  
Julio Cezar Pastre

The use of non-conventional solvent systems, such as deep eutectic solvents (DES), for biomass processing is a growing interest. DES are formed by two or more components, usually solids at room temperature, which can interact with each other via hydrogen bonding, from a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), resulting in a liquid phase. The most studied HBA in the literature is choline chloride with several HBD and their use have been extensively reviewed. However, other abundant and natural HBA can be successfully applied on the preparation of different DES, e.g., amino acids. These amino acid-based DES have been used in biomass pretreatment, providing the fractionation of the main macromolecular components by lignin solubilization. In addition, amino acid-based DES can be applied in biomass chemical conversion to obtaining platform chemicals such as furanic derivatives. Bearing this in mind, this review focuses on exploring the use of amino acid-based DES on biomass processing, from pretreatment to chemical conversion.


2020 ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background: Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation.Results: Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars of as high as 53.5 g·L–1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU·g–1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g·L–1 and 706 g·kg–1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g·L–1 was achieved with butanol yield of 137 g·kg–1 pretreated corncob by Clostridium saccharobutylicum DSM13864.Conclusions: Ethylamine and lactic acid based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


2019 ◽  
Vol 964 ◽  
pp. 109-114 ◽  
Author(s):  
Siti Zullaikah ◽  
Nizar Dwi Wibowo ◽  
I Made Gede Eris Dwi Wahyudi ◽  
M. Rachimoellah

High content of free fatty acids (FFA) in crude rice bran oil (CRBO) needs to be separated through deacidification. Generally, deacidification process that is widely used are chemical and physical processes which causes the loss of bioactive compounds (γ-oryzanol) and un-environmentally friendly. The liquid-liquid extraction (LLE) using deep eutectic solvents (DES) to remove FFA and preserve g-oryzanol would be implemented in this study. DES with different hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) with certain molar ratio such as Choline Chloride (ChCl)-Ethylene glycol 1:2 (DES I), ChCl-Glycerol 1:1 (DES II), ChCl-Urea 1:2 (DES III), ChCl-Oxalic acid 1:2 (DES IV), and Betaine Monohydrate-Glycerol 1:8 (NADES) were used as solvent to extract FFA from dewaxed/degummed RBO (DDRBO) for certain extraction time (30, 60, 120, 180, and 240 min) and extraction temperature (30°C, 40°C, 50°C, 60°C, and 70°C) under stirring (200 rpm). Deacidification using DES I for 240 min. and temperature of 50 °C was the optimum solvent to remove FFA (19.03 ± 2.33 %) and preserve g-oryzanol (recovery of g-oryzanol was 51.30 ± 1.77 %). The results also revealed that the longer time of extraction would be increased removal of FFA and decreased recovery of g-oryzanol. The higher temperature of extraction would be increased removal of FFA. In this work, temperature of 50 °C was the best extraction temperature of FFA since DES has highest solubility at this temperature.


2009 ◽  
Vol 62 (4) ◽  
pp. 341 ◽  
Author(s):  
Andrew P. Abbott ◽  
John Collins ◽  
Ian Dalrymple ◽  
Robert C. Harris ◽  
Reena Mistry ◽  
...  

The present paper describes the design and operation of the first large-scale extraction and separation of metals from a complex matrix using an ionic liquid. The liquid was a deep eutectic solvent based on choline chloride. The hydrogen-bond donors were mixed to optimize solubility and fluid viscosity. It was found that the incorporation of a fine particulate dust actually decreased the viscosity of the fluid. The present paper shows that selective extraction of zinc and lead can be achieved through judicious choice of the hydrogen-bond donor and it is also shown that metals in solution can be separated using cementation with zinc powder. Electrowinning of pure zinc is demonstrated but scale-up tests suggest that the process is relatively slow and has poor current efficiency. An alternative methodology was developed to rapidly recover the zinc from solution using dilute ammonia solution. It is also shown for the first time that cementation can be efficiently carried out in ionic liquids because the recovered metal is porous and allows thick layers to be deposited.


2020 ◽  
Vol 10 (3) ◽  
pp. 125-137
Author(s):  
Mohammed Awwalu Usman ◽  
Olumide Kayode Fagoroye ◽  
Toluwalase Olufunmilayo Ajayi ◽  
Abiola John Kehinde

Abstract In this study, deep eutectic solvents (DESs) were prepared using choline chloride as hydrogen bond acceptor (HBA) and ethylene glycol (EG) or glycerol (GLY) or urea (U) as hydrogen bond donor (HBD) and were evaluated as solvents in the extraction of benzene from n-hexane. Six of such solvents were prepared using different molar ratios of HBA: HBD and code named DES1, DES2, DES3, DES4, DES5 and DES6. Liquid–liquid equilibria (LLE) data for the ternary systems of n-hexane-benzene-DESs were measured at 303 K and 101.3 kPa. Solubility data and mutual solubilities between n-hexane and DES were measured using the traditional cloud point method. The tie lines were obtained using titration and refractive index measurements on both phases (n-hexane phase and DES-phases). The ternary systems exhibit type-1 phase behavior. The Othmer-Tobias and Hands equations were applied to examine the reliability of the LLE data. The tie-line data were correlated using the nonrandom two-liquid (NRTL) and universal quasichemical (UNIQUAC) thermodynamic models, and their corresponding binary interaction parameters were determined. The results show that the maximum separation factors were 31.24, 462.00, 15.24, 37.83, 174.60 and 126.00 for DES1, DES2, DES3, DES4, DES5 and DES6, respectively. The glycerol based DES (DES2 and DES5) show the highest separation factors and thus considered the most suitable for separating benzene from hexane. The regression coefficient for both Othmer-Tobias and Hand equations are higher than 0.99 for all DESs, indicating the reliability and consistency of the data. Both NRTL and UNIQUAC models adequately capture the experimental data.


Sign in / Sign up

Export Citation Format

Share Document