Deacidification of Crude Rice Bran Oil (CRBO) to Remove FFA and Preserve γ-Oryzanol Using Deep Eutectic Solvents (DES)

2019 ◽  
Vol 964 ◽  
pp. 109-114 ◽  
Author(s):  
Siti Zullaikah ◽  
Nizar Dwi Wibowo ◽  
I Made Gede Eris Dwi Wahyudi ◽  
M. Rachimoellah

High content of free fatty acids (FFA) in crude rice bran oil (CRBO) needs to be separated through deacidification. Generally, deacidification process that is widely used are chemical and physical processes which causes the loss of bioactive compounds (γ-oryzanol) and un-environmentally friendly. The liquid-liquid extraction (LLE) using deep eutectic solvents (DES) to remove FFA and preserve g-oryzanol would be implemented in this study. DES with different hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) with certain molar ratio such as Choline Chloride (ChCl)-Ethylene glycol 1:2 (DES I), ChCl-Glycerol 1:1 (DES II), ChCl-Urea 1:2 (DES III), ChCl-Oxalic acid 1:2 (DES IV), and Betaine Monohydrate-Glycerol 1:8 (NADES) were used as solvent to extract FFA from dewaxed/degummed RBO (DDRBO) for certain extraction time (30, 60, 120, 180, and 240 min) and extraction temperature (30°C, 40°C, 50°C, 60°C, and 70°C) under stirring (200 rpm). Deacidification using DES I for 240 min. and temperature of 50 °C was the optimum solvent to remove FFA (19.03 ± 2.33 %) and preserve g-oryzanol (recovery of g-oryzanol was 51.30 ± 1.77 %). The results also revealed that the longer time of extraction would be increased removal of FFA and decreased recovery of g-oryzanol. The higher temperature of extraction would be increased removal of FFA. In this work, temperature of 50 °C was the best extraction temperature of FFA since DES has highest solubility at this temperature.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Rima J. Isaifan ◽  
Abdukarem Amhamed

In the recent past few years, deep eutectic solvents (DESs) were developed sharing similar characteristics to ionic liquids but with more advantageous features related to preparation cost, environmental impact, and efficiency for gas separation processes. Amongst many combinations of DES solvents that have been prepared, reline (choline chloride as the hydrogen bond acceptor mixed with urea as the hydrogen bond donor) was the first DES synthesized and is still the one with the lowest melting point. Choline chloride/urea DES has proven to be a promising solvent as an efficient medium for carbon dioxide capture when compared with amine alone or ionic liquids under the same conditions. This review sheds light on the preparation method, physical and chemical characteristics, and the CO2 absorption capacity of choline chloride/urea DES under different temperatures and pressures reported up to date.


Author(s):  
Gustavo Gomes ◽  
Renan Mattioli ◽  
Julio Cezar Pastre

The use of non-conventional solvent systems, such as deep eutectic solvents (DES), for biomass processing is a growing interest. DES are formed by two or more components, usually solids at room temperature, which can interact with each other via hydrogen bonding, from a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), resulting in a liquid phase. The most studied HBA in the literature is choline chloride with several HBD and their use have been extensively reviewed. However, other abundant and natural HBA can be successfully applied on the preparation of different DES, e.g., amino acids. These amino acid-based DES have been used in biomass pretreatment, providing the fractionation of the main macromolecular components by lignin solubilization. In addition, amino acid-based DES can be applied in biomass chemical conversion to obtaining platform chemicals such as furanic derivatives. Bearing this in mind, this review focuses on exploring the use of amino acid-based DES on biomass processing, from pretreatment to chemical conversion.


2020 ◽  
Vol 10 (3) ◽  
pp. 125-137
Author(s):  
Mohammed Awwalu Usman ◽  
Olumide Kayode Fagoroye ◽  
Toluwalase Olufunmilayo Ajayi ◽  
Abiola John Kehinde

Abstract In this study, deep eutectic solvents (DESs) were prepared using choline chloride as hydrogen bond acceptor (HBA) and ethylene glycol (EG) or glycerol (GLY) or urea (U) as hydrogen bond donor (HBD) and were evaluated as solvents in the extraction of benzene from n-hexane. Six of such solvents were prepared using different molar ratios of HBA: HBD and code named DES1, DES2, DES3, DES4, DES5 and DES6. Liquid–liquid equilibria (LLE) data for the ternary systems of n-hexane-benzene-DESs were measured at 303 K and 101.3 kPa. Solubility data and mutual solubilities between n-hexane and DES were measured using the traditional cloud point method. The tie lines were obtained using titration and refractive index measurements on both phases (n-hexane phase and DES-phases). The ternary systems exhibit type-1 phase behavior. The Othmer-Tobias and Hands equations were applied to examine the reliability of the LLE data. The tie-line data were correlated using the nonrandom two-liquid (NRTL) and universal quasichemical (UNIQUAC) thermodynamic models, and their corresponding binary interaction parameters were determined. The results show that the maximum separation factors were 31.24, 462.00, 15.24, 37.83, 174.60 and 126.00 for DES1, DES2, DES3, DES4, DES5 and DES6, respectively. The glycerol based DES (DES2 and DES5) show the highest separation factors and thus considered the most suitable for separating benzene from hexane. The regression coefficient for both Othmer-Tobias and Hand equations are higher than 0.99 for all DESs, indicating the reliability and consistency of the data. Both NRTL and UNIQUAC models adequately capture the experimental data.


Author(s):  
Edyta Słupek ◽  
Patrycja Makoś

The paper presents a synthesis of deep eutectic solvents (DESs) based on choline chloride (ChCl) as hydrogen bond acceptor and phenol (Ph), glycol ethylene (EG), and levulinic acid (Lev) as hydrogen bond donors in 1:2 molar ratio. DESs were successfully used as absorption solvents for removal of dimethyl disulfide from (DMDS) from model biogas steam. Several parameters affecting the absorption capacity and absorption rate has been optimized including kind of DES, temperature, the volume of absorbent, model biogas flow rate, and initial concentration of DMDS. Furthermore, reusability and regeneration of DESs by means of adsorption and nitrogen barbotage followed by the mechanism of absorptive desulfurization by means of density functional theory (DFT) as well as FT-IR analysis were investigated. Experimental results indicate that the most promising DES for biogas purification is ChCl:Ph, due to high absorption capacity, relatively long absorption rate, and easy regeneration. The research on the absorption mechanism revealed that van der Waal interaction is the main driving force for DMDS removal from model biogas.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2157 ◽  
Author(s):  
Paulo Torres ◽  
Mercè Balcells ◽  
Enrique Cequier ◽  
Ramon Canela-Garayoa

Using the basic principle of construction between a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), four bio-based deep eutectic solvents (DESs) were prepared in a 1:2 molar ratio of HBA:HBD. 2,3-Dihydroxypropyl-1-triethylammonium chloride ([C9H22N+O2]Cl−) was synthesized from raw glycerol and used as an HBA. Lactic acid, urea, pure glycerol, and ethylene glycol were selected as HBD. Attempts to prepare DESs, using citric acid and benzoic acid as HBDs, were unsuccessful. All these DESs were characterized using FTIR and NMR techniques. Besides, physicochemical parameters such as pH, viscosity, density, and melting point were determined. The behavior of these DES to fractionate olive pomace was studied. Lignin recovery yields spanned between 27% and 39% (w/w) of the available lignin in olive pomace. The best DES, in terms of lignin yield ([C9H22N+O2]Cl− -lactic acid), was selected to perform a scale-up lignin extraction using 40 g of olive pomace. Lignin recovery on the multigram scale was similar to the mg scale (38% w/w). Similarly, for the holocellulose-rich fractions, recovery yields were 34% and 45% for mg and multi-gram scale, respectively. Finally, this DES was used to fractionate four fruit pruning samples. These results show that our novel DESs are alternative approaches to the ionic liquid:triethylammonium hydrogen sulfate and the widely used DES: choline chloride:lactic acid (1:10 molar ratio) for biomass processing.


2022 ◽  
Vol 52 (1) ◽  
pp. 27-33
Author(s):  
Naciye Kutlu ◽  
Merve Sılanur Yılmaz ◽  
Gizem Melissa Erdem ◽  
Ozge Sakiyan ◽  
Aslı Isci

In this study, deep eutectic solvents (DESs) were prepared using choline-chloride as the hydrogen-bond acceptor and glycerol, formic acid and acetic acid as the hydrogen-bond donor. The effect of different process parameters such as molar ratio (1:2, 1:3 and 1:4), water content (15%, 30% and 45%), temperature (25, 50 and 75 °C) and frequency on dielectric properties of the DESs were examined. In conclusion, the highest dielectric constant value was detected at 25 °C for all DESs. Moreover, for all DESs, it was found that a decrease in water content resulted in a decrease in both dielectric constant and loss factor values. This can be explained by the absence of free water molecules which are responsible from dipole rotation mechanism. In light of the results, if DES will be used in microwave extraction, formic or acetic acid containing DESs might give more successful results compared to the one with glycerol.


2020 ◽  
Vol 12 (4) ◽  
pp. 1619 ◽  
Author(s):  
Edyta Słupek ◽  
Patrycja Makoś

The paper presents a synthesis of deep eutectic solvents (DESs) based on choline chloride (ChCl) as hydrogen bond acceptor and phenol (Ph), glycol ethylene (EG), and levulinic acid (Lev) as hydrogen bond donors in 1:2 molar ratio. DESs were successfully used as absorption solvents for removal of dimethyl disulfide (DMDS) from model biogas steam. Several parameters affecting the absorption capacity and absorption rate have been optimized including kinds of DES, temperature, the volume of absorbent, model biogas flow rate, and initial concentration of DMDS. Furthermore, reusability and regeneration of DESs by means of adsorption and nitrogen barbotage followed by the mechanism of absorptive desulfurization by means of density functional theory (DFT) as well as FT-IR analysis were investigated. Experimental results indicate that the most promising DES for biogas purification is ChCl:Ph, due to high absorption capacity, relatively long absorption rate, and easy regeneration. The research on the absorption mechanism revealed that van der Waal interaction is the main driving force for DMDS removal from model biogas.


2017 ◽  
Author(s):  
◽  
Durgest Vinod Wagle

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen-bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. DESs possess several advantages over RTILs while being less expensive, synthetically accessible, nontoxic, and biodegradable. In this work we have probed into liquid structure of DES using quantum chemical calculations and neutron scattering experiments to elucidate the molecular interactions, charge transfer interactions, thermodynamics and mass transport associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), 1:2 molar ratio of choline chloride to glycerol (glyceline) and 1:1 choline chloride/malonic acid (maloline). The DESs were found to be stabilized by both conventional hydrogen bonds and C-H...[pi] interactions with significant charge transfer from choline and chloride to the hydrogen-bond donors, further confirmed by density of states analysis. Consequently, it was found that the sum of the bond orders of various choline-C1[minus] interactions in the DESs correlates directly with the melting temperatures of the DESs. From macroscopic measurements of glyceline, it was observed that the long-range translational diffusion of the larger cation (choline) is slower compared to the smaller glycerol molecule. However, the diffusion dynamics analyzed on the subnanometer length scale revealed that the displacements associated with the localized diffusive motions are actually larger for choline. This is due to ability of glycerol to form stronger hydrogen bonds with chloride anions compared to choline cation. Quantum chemical simulations performed on ASCs paired reline and ethaline DES systems revealed that ASCs interacted with the choline and HBD components of DESs through multiple unconventional non-covalent interactions i.e., CH...[pi], C=O...[pie], O-H...[pi] and N-H...[pi] interactions. Oxidation of ASCs improved interaction with DES components due enhanced ability to form multiple hydrogen bonds. ASCs exhibited significant improvement in change free energy of solvation upon oxidation indicating that oxidation could aid in enhancing selective extraction of oxidized ASCs from liquid fuel using DES.


2017 ◽  
Author(s):  
◽  
Maryam Al Ameri

In this study, green solvent-based pretreatment was developed for improving the conversion of switchgrass to acetoin. Deep eutectic solvents (DESs), comprising choline chloride (ChCl) as a hydrogen-bond acceptor (HBA) and various chemical as a hydrogen-bond donor (HBD), were used to pretreat switchgrass. Different HBD groups, including polyalcohol, amid, diazole, and carboxylic acid, were used to synthesize DESs. The DESs using ChCl-formic acid and ChCl-lactic acid-acetic acid showed excellent performance in enhancing switchgrass digestibility. The obtained hydrolysate was successfully detoxified by using overliming detoxification, which was further used for acetoin fermentation by Bacillus licheniformis (NRRL B-642). The yield and titer of the produced acetoin were 0.377 g/g and 19.6 g/L, respectively. Our research demonstrates that DES pretreatment is an effective method for reducing biomass recalcitrance and improving the conversion of biomass into chemicals.


2021 ◽  
Vol 11 (6) ◽  
pp. 14620-14633

Turmeric contains curcumin as one of the active constituents, which gives yellow color and possesses lots of pharmacological actions. Even though curcumin has lots of pharmacological actions till now, it has not been approved as a medicine due to its low water solubility, permeability, and poor bioavailability. Deep eutectic solvent (DES) can be prepared by simply mixing two or more solid components, [among the two one is hydrogen bond donor (HBD) and another is hydrogen bond acceptor (HBA)] at a definite molar ratio where the solid components by self-association converted into a liquid at room temperature (RT). Natural deep eutectic solvents (NADES) are a specific subgroup of DES containing primary plant-based metabolites such as organic acids, alcohols, amino acids, or sugars. In this work, natural hydrophobic DESs were prepared with Camphor, Menthol, and Thymol. This was prepared from different ratios of Menthol:Thymol 1:1 to 1:5 and 1:1 to 5:1 (MT-DES); Camphor:Thymol 1:1 to 1:5 and 1:1 to 5:1 (CT-NADES); Camphor:Menthol 1:1 to 1:5 and 1:1 to 2:1 (CM-NADES). The pH and viscosity of prepared DESs were determined with the help of a digital pH meter and Brookfield viscometer. The solubility of curcumin in different NADESs was determined at room temperature (RT) to higher temperatures. The formation of different clear DES was obtained with slight heat. There was no difference in pH for the NADESs prepared without and with heat. Regarding the viscosity CM-DES (1:1) showed less viscosity when compared to other NADESs. The solubility of curcumin was found to be nearly double when it was dissolved in NADES for 1 hr at 35-40°C compared to 48 h stirring at 500 rotations per minute (rpm) at RT. Among different NADESs, curcumin solubility was found to be more in CM (1:1) ratio when compared to other NADESs.


Sign in / Sign up

Export Citation Format

Share Document