scholarly journals An improved study of HCO+ and He system: interaction potential, collisional relaxation and pressure broadening

Author(s):  
Francesca Tonolo ◽  
Luca Bizzocchi ◽  
Mattia Melosso ◽  
François Lique ◽  
Luca Dore ◽  
...  

Results are given for the pressure broadening of lines in the vibration-rotation bands of carbon monoxide and deuterium chloride, by a wide variety of added gases including both non-polar and polar molecules. Optical collision diameters have been calculated and considered in relation to the interaction forces likely to be involved. For carbon monoxide, a rough correlation is found between the optical collision diameter and the interaction potential for non-polar broadeners where dispersion forces are dominant, but derivations occur with some polar broadeners. Similar data for deuterium chloride illustrate the importance of dipolar forces, but no simple theory explains the results satisfactorily. The variation of line width with J quantum number is discussed.


2021 ◽  
Vol 94 ◽  
pp. 100619
Author(s):  
Vijayakumar Thangavel Mahalingam ◽  
Ilango Kaliappan ◽  
Satish Kumar Rajappan Chandra ◽  
Melvin George ◽  
Mohan Kumar Ramasamy ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Orion Ciftja

AbstractWe consider the stability of the circular Fermi surface of a two-dimensional electron gas system against an elliptical deformation induced by an anisotropic Coulomb interaction potential. We use the jellium approximation for the neutralizing background and treat the electrons as fully spin-polarized (spinless) particles with a constant isotropic (effective) mass. The anisotropic Coulomb interaction potential considered in this work is inspired from studies of two-dimensional electron gas systems in the quantum Hall regime. We use a Hartree–Fock procedure to obtain analytical results for two special Fermi liquid quantum electronic phases. The first one corresponds to a system with circular Fermi surface while the second one corresponds to a liquid anisotropic phase with a specific elliptical deformation of the Fermi surface that gives rise to the lowest possible potential energy of the system. The results obtained suggest that, for the most general situations, neither of these two Fermi liquid phases represent the lowest energy state of the system within the framework of the family of states considered in this work. The lowest energy phase is one with an optimal elliptical deformation whose specific value is determined by a complex interplay of many factors including the density of the system.


Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


Author(s):  
Kun Wang ◽  
Xueting Yao ◽  
Miao Zhang ◽  
Dongyang Liu ◽  
Yuying Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document