Effect of trapped-ion heating on generalised Ramsey methods for suppressing frequency shifts caused by a probe field in atomic clocks

2019 ◽  
Vol 49 (5) ◽  
pp. 429-432
Author(s):  
S N Kuznetsov ◽  
A V Taichenachev ◽  
V I Yudin ◽  
N Huntemann ◽  
C Sanner ◽  
...  
Author(s):  
David R. Leibrandt ◽  
Samuel M. Brewer ◽  
Jwo-Sy Chen ◽  
Chin-Wen Chou ◽  
Aaron M. Hankin ◽  
...  

2020 ◽  
Author(s):  
Eric Burt ◽  
John Prestage ◽  
Robert Tjoelker ◽  
Daphna Enzer ◽  
Da Kuang ◽  
...  

Abstract Atomic clocks, which lock the frequency of an oscillator to the extremely stable quantized energy levels of atoms, are essential for navigation applications such as deep space exploration1 and the Global Positioning System (GPS)2 and as scientific tools for addressing questions in fundamental physics3,4,5,6. Atomic clocks that can be launched into space are an enabling technology for GPS, but to date have not been applied to deep space navigation and have seen only limited application to scientific questions due to performance constraints imposed by the rigors of space launch and operation7. The invention of methods to electromagnetically trap and cool ions has revolutionized atomic clock performance8,9,10,11,12,13. Terrestrial trapped ion clocks have achieved orders of magnitude improvements in performance over their predecessors and have become a key component in national metrology laboratories13. However, transporting this new technology into space has remained elusive. Here we show the results from the first-ever trapped ion atomic clock to operate in space. Launched in 2019, NASA’s Deep Space Atomic Clock (DSAC) has operated for more than 12 months, demonstrating a short-term fractional frequency stability of between 1 and 2 x 10-13 at 1 second of averaging time (measured on the ground), a long-term stability of 3 x 10-15 at 23 days, and an estimated drift of 3.0(0.7) x 10-16 per day. Each of these exceeds current space clock performance by as much as an order of magnitude14,15,16. We found the DSAC clock to be particularly amenable to the space environment, having low sensitivities to variations in radiation, temperature, and magnetic fields, and we were able to characterize these in detail. This level of space clock performance will enable new types of space navigation. In particular, the DSAC mission has demonstrated a process called one-way navigation whereby signal delay times are measured in-situ making near-real-time deep space probe navigation possible17.


Author(s):  
M.P. Thomas ◽  
A.R. Waugh ◽  
M.J. Southon ◽  
Brian Ralph

It is well known that ion-induced sputtering from numerous multicomponent targets results in marked changes in surface composition (1). Preferential removal of one component results in surface enrichment in the less easily removed species. In this investigation, a time-of-flight atom-probe field-ion microscope A.P. together with X-ray photoelectron spectroscopy XPS have been used to monitor alterations in surface composition of Ni3Al single crystals under argon ion bombardment. The A.P. has been chosen for this investigation because of its ability using field evaporation to depth profile through a sputtered surface without the need for further ion sputtering. Incident ion energy and ion dose have been selected to reflect conditions widely used in surface analytical techniques for cleaning and depth-profiling of samples, typically 3keV and 1018 - 1020 ion m-2.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


Author(s):  
E.A. Fischione ◽  
P.E. Fischione ◽  
J.J. Haugh ◽  
M.G. Burke

A common requirement for both Atom Probe Field-Ion Microscopy (APFIM) and Scanning Tunnelling Microscopy (STM) is a sharp pointed tip for use as either the specimen (APFIM) or the probe (STM). Traditionally, tips have been prepared by either chemical or electropolishing techniques. Recently, ion-milling has been successfully employed in the production of APFIM tips [1]. Conventional electropolishing techniques are applicable to a wide variety of metals, but generally require careful manual adjustments during the polishing process and may also be time-consuming. In order to reduce the time and effort involved in the preparation process, a compact, self-contained polishing unit has been developed. This system is based upon the conventional two-stage electropolishing technique in which the specimen/tip blank is first locally thinned or “necked”, and subsequently electropolished until separation occurs.[2,3] The result of this process is the production of two APFIM or STM tips. A mechanized polishing unit that provides these functions while automatically maintaining alignment has been designed and developed.


Author(s):  
E.A. Kenik ◽  
T.A. Zagula ◽  
M.K. Miller ◽  
J. Bentley

The state of long-range order (LRO) and short-range order (SRO) in Ni4Mo has been a topic of interest for a considerable time (see Brooks et al.). The SRO is often referred to as 1½0 order from the apparent position of the diffuse maxima in diffraction patterns, which differs from the positions of the LRO (D1a) structure. Various studies have shown that a fully disordered state cannot be retained by quenching, as the atomic arrangements responsible for the 1½0 maxima are present at temperatures above the critical ordering temperature for LRO. Over 20 studies have attempted to identify the atomic arrangements associated with this state of order. A variety of models have been proposed, but no consensus has been reached. It has also been shown that 1 MeV electron irradiation at low temperatures (∼100 K) can produce the disordered phase in Ni4Mo. Transmission electron microscopy (TEM), atom probe field ion microscopy (APFIM), and electron irradiation disordering have been applied in the current study to further the understanding of the ordering processes in Ni4Mo.


Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.


Sign in / Sign up

Export Citation Format

Share Document