Environmental monitoring programs: recognising the importance of conservation values

2013 ◽  
Vol 53 (2) ◽  
pp. 480
Author(s):  
Andrew Smith

The Gorgon Project will develop the Gorgon and Jansz-Io gas fields, located in the Greater Gorgon area, about 130 km off the northwest coast of WA. It includes the construction of a 15 million tonne per annum (mtpa) LNG plant on Barrow Island and a domestic gas plant with the capacity to provide 300 terajoules per day to supply gas to WA. Barrow Island—where Gorgon will be located—is an internationally significant nature reserve and the site of Australia’s largest onshore operating oil field for the past 45 years. As a world-class example of environmental management, it has shown that conservation and development can successfully co-exist. Recognising the importance of Barrow Island’s conservation values, the terrestrial and subterranean environmental monitoring program encompasses key ecological elements on Barrow Island including birds, mammals, subterranean fauna, vegetation, and surface water and land forms. These elements are monitored in relation to the potential impact from environmental stressors identified during pre-construction environmental impact assessments. Here, the author describes the monitoring surveys conducted during the year as appropriate according to the element being considered. All surveys are executed using the Gorgon Project field mobilisation and deployment process, a stringent and dedicated system that ensures all essential health and safety processes are in place and adhered to. Each element is monitored for signs of positive or negative impact across Barrow Island with comparisons made between the pre-determined Terrestrial Disturbance Footprint (TDF) and areas outside of the TDF in which the Gorgon Project is committed to causing zero environmental harm. Statistical control charts and tiered response triggers based on standard deviations are used to inform management decisions about potential environmental effects attributable to the Gorgon Project. A continuous review process is in place to ensure all monitoring programs are scientifically robust and use up-to-date methodologies. Monitoring reports are used to assess the validity of each program and supplementary programs aimed at addressing gaps in existing knowledge are started as and when needed. A reporting framework is in place to ensure regulatory authorities are informed and collaborations are sought to advance overall understanding of the ecology and biology of Barrow Island fauna and flora. The Gorgon Project is operated by an Australian subsidiary of Chevron and is a joint venture of the Australian subsidiaries of Chevron (about 47%), ExxonMobil (25%), Shell (25%), Osaka Gas (1.25%), Tokyo Gas (1%) and Chubu Electric Power (0.417%).

2018 ◽  
Vol 26 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Joshua G. Cronmiller ◽  
Bram F. Noble

Long-term regional environmental monitoring, coupled with shorter-term and more localized monitoring carried out under regulatory permitting processes, is foundational to identifying, understanding, and effectively managing cumulative environmental effects. However, monitoring programs that emerge to support cumulative effects science are often short-lived initiatives or disconnected from land use planning and regulatory decision making. This paper examines the history and evolution of environmental monitoring in the Lower Athabasca region of Alberta, Canada, and the enabling and constraining influences of institutional arrangements. Methods involved a review of regional-scale monitoring programs based on an analysis of monitoring agency mandates, performance reports, and external program reviews, supplemented by discussions with monitoring program or agency key informants to triangulate results. Results show that monitoring to support cumulative effects understanding in the Lower Athabasca has advanced considerably, especially since the mid-1990s, but its relevance to, and impact on, cumulative effects management and decision making has been stifled by institutional arrangements. Monitoring has been episodic, reflecting shifting priorities and competing mandates; criticized by stakeholders based on concerns about transparency, credibility, influence over decision making; and characterized by short-lived commitments by the agencies involved. This has generated significant uncertainty about the stability of institutional arrangements to support long-term environmental monitoring, and tensions between the need for scientific autonomy for credible science whilst ensuring the pursuit of monitoring questions that are relevant to the day-to-day needs of regulatory decision makers. Regional monitoring programs require, at a minimum, clear vision and agreed-upon monitoring questions that are of scientific and management value, meaningful and balanced stakeholder engagement, and a clear governance process to ensure credibility and influence of monitoring results on decision making.


1998 ◽  
Vol 38 (1) ◽  
pp. 610
Author(s):  
G.W. Terrens ◽  
D. Gwyther ◽  
M.J. Keough

Esso Australia Ltd. (Esso) on behalf of the Esso/BHP joint venture undertakes exploration and development drilling activities to produce oil and gas from the Gippsland Basin in eastern Bass Strait. As part of the environmental management of the operation, a field monitoring program was undertaken to verify the predicted limited effect on the seabed of the discharge of residual synthetic based mud (SBM) adhered to drill cuttings.Reservoir studies of the mature Fortescue oil field identified scope to more efficiently deplete existing reserves as well as develop undrained oil pools within the known reservoir system. As such, 18 additional wells were drilled from the Fortescue platform in 1994-1996 following the original development drilling program when 21 wells were drilled in 1983-1985.Esso's standard drilling fluid in Bass Strait is an environmentally acceptable water based mud (WBM). However, due to the high frictional forces involved the greater lubricating properties of a non-water based drilling mud were required to drill the long reach, high angle sections of seven of the additional wells. The ester SBM was chosen on the basis of its lubricity and biodegradability, to reduce any potential environmental effects from the persistence of non-water based mud in seabed sediments.A seabed monitoring program was undertaken around the Fortescue platform by taking seabed samples from August 1995 to August 1997 at sites along a transect following the predominant ocean current and at control sites, before, during and after the period in which SBM cuttings were discharged. The seabed sediments were measured for esters, barium, biological changes and grain size. Results show clearly the increase in esters concentration in sediments during drilling, then the rapid decrease after completion of cuttings discharge. After a recovery period of 11 months from completion of SBM drilling, SBM esters were not detected in sediments. Sediment barium concentration was also found to be elevated, but only after SBM had been used, indicating greater dispersion of WBM than the more cohesive SBM. The barium concentrations found generally do not have measurable effects on biota. The impact on the sediment biology was found to be limited to the sampling site 100 m from the platform discharge point with recovery evident within four months of completion of drilling.Mechanisms for recovery of the minimal zone of effect are thought to be a combination of the biodegradation of the ester SBM used and the physical seabed dispersion process evident in eastern Bass Strait generated by the continuous series of storms which pass through especially in winter.


2012 ◽  
Vol 52 (1) ◽  
pp. 317 ◽  
Author(s):  
John Russell Hanley

Marine environmental monitoring programs are these days a standard requirement for the oil and gas industry in all jurisdictions. Monitoring programs are generally required during the construction and siting of infrastructure in or near the marine environment and then also for the operational phases of that infrastructure. The types and scales of monitoring programs developed and implemented vary enormously from project to project and typically reflect the complex interplay between often competing factors such as legislative framework, environmental and political sensitivities, cost, industry standards, existing information, predicted levels of impact, access to technology, and the level of professional expertise engaged. With so many factors influencing the design of a program it is sometimes difficult to focus on the core requirements of any marine environmental monitoring program. Using case examples this paper provides some advice on choosing which potential impacts are important to monitor, developing a good study design (including the importance of baseline data collection and pilot studies), choosing the right parameters to monitor, avoiding the seduction of technology, and selecting appropriate statistical tests. The other topic covered is some advice on the interpretation of results with emphasis on the need for clarity at the beginning of a monitoring program about what the data collected will, or can, be used for.


Author(s):  
I. V. May ◽  
A. A. Kokoulina ◽  
S. Yu. Balashov

Introduction. The city of Chita of Zabaikalsky region is one of the cities of Russia, priority on level of pollution of atmosphere. Of the order of 130 impurities emitted by the sources of the city, 12 are monitored at 5 posts of the Roshydromet network. Maximum monthly average concentrations are formed by benz (a) pyrene (up to 56.8 MPC), hydrogen sulfide (12.3 MPC), suspended particles (up to 4PDC), phenol (up to 3.6 MPC). Significant emissions (59.73 thousand tons in 2018) are aggravated by the use of coal as a fuel by heat and power enterprises and the private sector, climatic and geographical features. Within the framework of the Federal project “Clean Air” of the national project “Ecology”, it is envisaged to reduce the gross emission of pollutants into the atmosphere of Chita by 8.75 thousand tons by 2024, which should lead to a significant improvement in the safety and quality of life of citizens. It is necessary to identify the most “risky “components of pollution for health.It is important to understand: whether the environmental monitoring system reflects the real picture of the dangers posed by pollution of the city’s atmosphere; whether there is a need to optimize the monitoring system for the subsequent assessment of the effectiveness and efficiency of measures; what impurities and at what points should be monitored in the interests of the population, administration and economic entities implementing air protection measures.The aim of the study is to develop recommendations for optimizing the program of environmental monitoring of air quality in the city of Chita, taking into account the criteria of danger to public health for the subsequent evaluation of the effectiveness and effectiveness of the Federal project “Clean Air”.Materials and methods. Justification of optimization of monitoring programs was carried out through the calculation of hazard indices, considering: the mass of emissions and toxicological characteristics of each chemical; the population under the influence. A vector map of the city with a layer “population density” was used as a topographic base. The indices were calculated for regular grid cells covering the residential area. For each cell, the repeatability of winds of 8 points from the priority enterprises and the population within the calculated cell were taken into account. As a result, each calculation cell was characterized by a total coefficient, taking into account the danger of potential impacts of emissions. Based on the results of the assessments, recommendations were formulated to optimize the placement of posts in the city and the formation of monitoring programs.Results. Indices of carcinogenic danger to the health of the population of Chita ranged from 584,805. 96 to 0.03 (priorities: carbon (soot), benzene, benz (a) pyrene); indices of non-carcinogenic danger — from 1,443,558. 24 to 0.00 (priorities: sulfur dioxide, inorganic dust containing 70–20% SiO2, fuel oil ash). The greatest danger to public health stationary sources of emissions form in the North-Western, Western and South-Eastern parts of the city. Roshydromet posts in these zones are absent.Conclusions. As part of the objectives of the project “Clean Air”, it is recommended to Supplement the existing state network of observations of atmospheric air quality in Chita with two posts; to include manganese, xylene, vanadium pentoxide in the monitoring programs, to carry out the determination of Benz(a)pyrene et all posts, which will allow to fully and adequately assess the danger of emissions of economic entities, as well as the effectiveness and efficiency of the provided air protection measures.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Wade A. Rourke ◽  
Andrew Justason ◽  
Jennifer L. Martin ◽  
Cory J. Murphy

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


2018 ◽  
Vol 43 ◽  
pp. 165-173 ◽  
Author(s):  
M. Ekström ◽  
P.-A. Esseen ◽  
B. Westerlund ◽  
A. Grafström ◽  
B.G. Jonsson ◽  
...  

2004 ◽  
Vol 15 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Kuoh How Ong ◽  
Craig M. Harvey ◽  
Randa L. Shehab ◽  
Jerry D. Dechert ◽  
Ashok Darisipudi

Sign in / Sign up

Export Citation Format

Share Document