toxin uptake
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 2)

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Wade A. Rourke ◽  
Andrew Justason ◽  
Jennifer L. Martin ◽  
Cory J. Murphy

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 493 ◽  
Author(s):  
Alexandre Campos ◽  
Marisa Freitas ◽  
André M. de Almeida ◽  
José Carlos Martins ◽  
Dany Domínguez-Pérez ◽  
...  

Diarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe’s and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms’ metabolisms. The methodologies used in OMICs are also highly effective to identify critical metabolic pathways affecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquaculture.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 449 ◽  
Author(s):  
Annie Willysson ◽  
Anne-lie Ståhl ◽  
Daniel Gillet ◽  
Julien Barbier ◽  
Jean-Christophe Cintrat ◽  
...  

Shiga toxin (Stx)-stimulated blood cells shed extracellular vesicles (EVs) which can transfer the toxin to the kidneys and lead to hemolytic uremic syndrome. The toxin can be taken up by renal cells within EVs wherein the toxin is released, ultimately leading to cell death. The mechanism by which Stx is taken up, translocated, and sequestered in EVs was addressed in this study utilizing the B-subunit that binds to the globotriaosylceramide (Gb3) receptor. We found that Stx1B was released in EVs within minutes after stimulation of HeLa cells or red blood cells, detected by live cell imaging and flow cytometry. In the presence of Retro-2.1, an inhibitor of intracellular retrograde trafficking, a continuous release of Stx-positive EVs occurred. EVs from HeLa cells possess the Gb3 receptor on their membrane, and EVs from cells that were treated with a glycosylceramide synthase inhibitor, to reduce Gb3, bound significantly less Stx1B. Stx1B was detected both on the membrane and within the shed EVs. Stx1B was incubated with EVs derived from blood cells, in the absence of cells, and was shown to bind to, and be taken up by, these EVs, as demonstrated by electron microscopy. Using a membrane translocation assay we demonstrated that Stx1B was taken up by blood cell- and HeLa-derived EVs, an effect enhanced by chloropromazine or methyl-ß-cyclodextrin, suggesting toxin transfer within the membrane. This is a novel mechanism by which EVs derived from blood cells can sequester their toxic content, possibly to evade the host response.


Harmful Algae ◽  
2020 ◽  
Vol 95 ◽  
pp. 101818 ◽  
Author(s):  
Alison Turnbull ◽  
Navreet Malhi ◽  
Andreas Seger ◽  
Tim Harwood ◽  
Jessica Jolley ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 703 ◽  
Author(s):  
Julie Heggelund ◽  
Joel Heim ◽  
Gregor Bajc ◽  
Vesna Hodnik ◽  
Gregor Anderluh ◽  
...  

Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of mortality in children under five years of age and is a great burden on developing countries. The major virulence factor of the bacterium is the heat-labile enterotoxin (LT), a close homologue of the cholera toxin. The toxins bind to carbohydrate receptors in the gastrointestinal tract, leading to toxin uptake and, ultimately, to severe diarrhea. Previously, LT from human- and porcine-infecting ETEC (hLT and pLT, respectively) were shown to have different carbohydrate-binding specificities, in particular with respect to N-acetyllactosamine-terminating glycosphingolipids. Here, we probed 11 single-residue variants of the heat-labile enterotoxin with surface plasmon resonance spectroscopy and compared the data to the parent toxins. In addition we present a 1.45 Å crystal structure of pLTB in complex with branched lacto-N-neohexaose (Galβ4GlcNAcβ6[Galβ4GlcNAcβ3]Galβ4Glc). The largest difference in binding specificity is caused by mutation of residue 94, which links the primary and secondary binding sites of the toxins. Residue 95 (and to a smaller extent also residues 7 and 18) also contribute, whereas residue 4 shows no effect on monovalent binding of the ligand and may rather be important for multivalent binding and avidity.


Author(s):  
Julie E. Heggelund ◽  
Joel B. Heim ◽  
Gregor Bajc ◽  
Vesna Hodnik ◽  
Gregor Anderluh ◽  
...  

Diarrhoea caused by enterotoxigenic Escherichia coli is one of the leading causes of mortality in children under five years of age and is a great burden on developing countries. The major virulence factor of the bacterium is the heat-labile enterotoxin (LT), a close homologue of the cholera toxin. The toxins bind to carbohydrate receptors in the gastrointestinal tract, leading to toxin uptake and, ultimately, to severe diarrhoea. Previously, LT from human- and porcine-infecting ETEC (hLT and pLT, respectively) were shown to have different carbohydrate-binding specificities, in particular with respect to N-acetyllactosamine-terminating glycosphingolipids. Here, we probed eleven single-residue variants of the heat-labile enterotoxin with surface plasmon resonance spectroscopy and compared the data to the parent toxins. In addition we present a 1.45 Å crystal structure of pLTB in complex with branched Lacto-N-neohexaose (Galbeta4GlcNAcbeta6[Galbeta4GlcNAcbeta3]Galbeta4Glc). The largest difference in binding specificity is caused by mutation of residue 94, which links the primary and secondary binding sites of the toxins. Residue 95 (and to a smaller extent also residues 7 and 18) also contribute, whereas residue 4 shows no effect on monovalent binding of the ligand and may rather be important for multivalent binding and avidity.


Author(s):  
Julie E. Heggelund ◽  
Joel B. Heim ◽  
Gregor Bajc ◽  
Vesna Hodnik ◽  
Gregor Anderluh ◽  
...  

Diarrhoea caused by enterotoxigenic Escherichia coli is one of the leading causes of mortality in children under five years of age and is a great burden on developing countries. The major virulence factor of the bacterium is the heat-labile enterotoxin (LT), a close homologue of the cholera toxin. The toxins bind to carbohydrate receptors in the gastrointestinal tract, leading to toxin uptake and, ultimately, to severe diarrhoea. Previously, LT from human- and porcine-infecting ETEC (hLT and pLT, respectively) were shown to have different carbohydrate-binding specificities, in particular with respect to N-acetyllactosamine-terminating glycosphingolipids. Here, we probed eleven single-residue variants of the heat-labile enterotoxin with surface plasmon resonance spectroscopy and compared the data to the parent toxins. In addition we present a 1.45 Å crystal structure of pLTB in complex with branched Lacto-N-neohexaose (Galb4GlcNAcb6[Galb4GlcNAcb3]Galb4Glc). The largest difference in binding specificity is caused by mutation of residue 94, which links the primary and secondary binding sites of the toxins. Residue 95 (and to a smaller extent also residues 7 and 18) also contribute, whereas residue 4 shows no effect on monovalent binding of the ligand and may rather be important for multivalent binding, enhancing avidity.


2018 ◽  
Vol 308 (8) ◽  
pp. 1036-1042 ◽  
Author(s):  
Alipio Pinto ◽  
Clara Berdasco ◽  
David Arenas-Mosquera ◽  
Adriana Cangelosi ◽  
Patricia A. Geoghegan ◽  
...  

2018 ◽  
Vol 115 (38) ◽  
pp. 9580-9585 ◽  
Author(s):  
Marcus Steinemann ◽  
Andreas Schlosser ◽  
Thomas Jank ◽  
Klaus Aktories

Various bacterial protein toxins, includingClostridium difficiletoxins A (TcdA) and B (TcdB), attack intracellular target proteins of host cells by glucosylation. After receptor binding and endocytosis, the toxins are translocated into the cytosol, where they modify target proteins (e.g., Rho proteins). Here we report that the activity of translocated glucosylating toxins depends on the chaperonin TRiC/CCT. The chaperonin subunits CCT4/5 directly interact with the toxins and enhance the refolding and restoration of the glucosyltransferase activities of toxins after heat treatment. Knockdown of CCT5 by siRNA and HSF1A, an inhibitor of TRiC/CCT, blocks the cytotoxic effects of TcdA and TcdB. In contrast, HSP90, which is involved in the translocation and uptake of ADP ribosylating toxins, is not involved in uptake of the glucosylating toxins. We show that the actions of numerous glycosylating toxins from various toxin types and different species depend on TRiC/CCT. Our data indicate that the TRiC/CCT chaperonin system is specifically involved in toxin uptake and essential for the action of various glucosylating protein toxins acting intracellularly on target proteins.


Sign in / Sign up

Export Citation Format

Share Document