Application of dynamic simulation to assess the effectiveness of well clean-up in a horizontal gas well

2017 ◽  
Vol 57 (2) ◽  
pp. 617
Author(s):  
Hsiao Wun Moh ◽  
Erni Dharma Putra ◽  
Rahel Yusuf

Well clean-up operation involves the removal of drilling and completion fluids from the wellbore before diverting the well to production facilities. Natural flow clean-up is preferred due to its relatively low cost and simplicity. Depending on the weight of the initial contents in the wellbore and the reservoir properties, artificial lift assisted clean-up such as nitrogen injection through coiled tubing may be required for some wells to ensure the well clean-up objectives are achieved. Well clean-up is transient in nature thus necessitating the need for a dynamic simulation approach to assess the effectiveness of different clean-up options and arrive at the optimal procedure before embarking on the actual field operation. In the current study, a comprehensive-multiphase-transient-simulator (OLGA) was used to predict the clean-up of a gas well with relatively short horizontal open-hole section and low reservoir pressure. Dynamic simulations of clean-up operations for different scenarios such as mud cake lift-off pressures and uncertainties in well productivity were conducted to assess the effectiveness of natural clean-up. Well clean-up failure could lead to impaired deliverability and potential for preferential flow hotspots. The study also assessed if coiled tubing-assisted operations would be beneficial in cases of natural clean-up being ineffective. This paper demonstrates the importance of using transient simulations to provide useful insights into flow and pressure dynamics inside the wellbore during clean-up which can help engineers to predict, design and optimise well clean-up operations, thus increasing the probability of a successful clean-up operation.

2010 ◽  
Author(s):  
Walter Nunez Garcia ◽  
Ricardo Solares ◽  
Jairo Alonso Leal Jauregui ◽  
Jorge E. Duarte ◽  
Alejandro Chacon ◽  
...  

2021 ◽  
Author(s):  
Abdelhak Mohamed Ladmia ◽  
Hamdan A Alhammadi ◽  
Dr. Elyes Draoui ◽  
Dr. Kristian Mogensen ◽  
Fahad Mohamed.M Al Hosani ◽  
...  

Abstract This paper presents a summary of the deployed Smart Liner- SL equivalent to the Limited Entry Liner- LEL as lower completion for the first time in a sidetracked Gas well, Offshore Abu Dhabi. R-1 is subdivided into several sub-layers, the reservoir properties are characterized by low porosity & low permeability (Tight). Reservoir quality in the Upper part is better in terms of porosity & permeability than the lower part. The gas production is mainly from top part of R-1 reservoir, no contribution from Lower part. In 2017, Data gathering was conducted on well A-1 (Coring, Logging & Pressure Points). Actual Gas production Offset wells are restricted from optimal production due to Well Integrity Sustainable Annulus Pressure, to compensate the restricted aged wells due to Well Integrity, Gas production can be increased to 3 times using SL as a stimulation method. The Smart Liner was selected as a lower completion and as a stimulation method for better flow distribution, improved well performance, effective Acid stimulation, also to ensure hole accessibility, allowing aggressive bullhead stimulation at high rate/pressure and high acid concentration at less time ~ 1.5days/job, in addition to eliminating high risk and high cost Coiled Tubing (CT) intervention for stimulation. The first step was to design the SL Completion Workflow with a representative well trajectory for the selected well to be fed and reservoir properties to be extracted from the dynamic model, and then to create a representative stimulation model utilizing property numerical software with all possible scenarios; open hole that represents PPL and suggested SL compartmentalization and holes distribution based on reservoir parameters along the lateral. Once the well model is created, different scenarios for different completion designs are to be run versus different acid concentrations and volumes till achieving the optimum results from stimulation point of view in addition to formation and facilities limitations. Drilling operations were very challenging; fortunately, we succeed to deploy the SL after final adjustment based on FMI Natural Fractures. The Smart Liner as stimulation has proved to be a cost-effective solution for gas wells comparing to advanced stimulation methods in addition to eliminating the high risk and high cost of the Coiled Tubing (CT) intervention for stimulation a huge savings in well construction with maximizing performance.


2015 ◽  
Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  

2014 ◽  
Vol 568-570 ◽  
pp. 1020-1025
Author(s):  
Zhuo Wei Jiang ◽  
Chun Ming Gao

In view of badly transplanting of analog filter and low cost performance of digital filter for the washing out signal methods used by dynamic simulator, this paper proposed a computer intelligent time domain method. We decompose signal with the computer intelligence in the time domain, and convert the signal into the corresponding movement form respectively, then get the final result by overlaying them. The experimental results show that this method not only can achieve the effect of the traditional methods, better portability and faster computation speed, but also can be achieved directly on general computers.


2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


2021 ◽  
Author(s):  
Saurabh Anand ◽  
Eadie Azahar B Rosland ◽  
Elsayed Ouda Ghonim ◽  
Latief Riyanto ◽  
Khairul Azhar B Abu Bakar ◽  
...  

Abstract PETRONAS had embarked on an ambitious thru tubing ESP journey in 2016 and had installed global first truly rig less offshore Thru Tubing ESP (TTESP) in 2017. To replicate the success of the first installation, TTESP's were installed in Field – T. However, all these three TTESP's failed to produce fluids to surface. This paper provides the complete details of the troubleshooting exercise that was done to find the cause of failure in these wells. The 3 TTESP's in Field – T were installed as per procedure and was ready to be commissioned. However, during the commissioning, it was noticed that the discharge pressure of the ESP did not build-up and the TTESP's tripped due to high temperature after 15 – 30 mins of operation. Hence none of the 3 TTESP's could be successfully commissioned. Considering the strategic importance of TTESP's in PETRONAS's artificial lift plans, detailed troubleshooting exercise was done to find the root cause of failure to produce in these three wells. This troubleshooting exercise included diesel bull heading which gave some key pump performance related data. The three TTESP's installed in Field – T were of size 2.72" and had the potential to produce an average 1500 BLPD at 80% water cut. The TTESP deployment was fully rigless and was installed using 0.8" ESP power cable. The ESP and the cable was hung-off from the surface using a hanger – spool system. The entire system is complex, and the installation procedure needs to be proper to ensure a successful installation. The vast amount of data gathered during the commissioning and troubleshooting exercise was used for determining the failure reason and included preparation of static and dynamic well ESP model. After detailed technical investigative work, the team believes to have found the root cause of the issue which explains the data obtained during commission and troubleshooting phase. The detailed troubleshooting workflow and actual data obtained will be presented in this paper. A comprehensive list of lessons learnt will also be presented which includes very important aspects that needs to be considered during the design and installation of TTESP. The remedial plan is finalized and will be executed during next available weather window. The key benefit of a TTESP installation is its low cost which is 20% – 30% of a rig-based ESP workover in offshore. Hence it is expected that TTESP installations will pick-up globally and it's important for any operator to fully understand the TTESP systems and the potential pain points. PETRONAS has been a pioneer in TTESP field, and this paper will provide details on the learning curve during the TTESP journey.


2011 ◽  
Author(s):  
Victor Gerardo Vallejo ◽  
Aciel Olivares ◽  
Pablo Crespo Hdez ◽  
Eduardo R. Roman ◽  
Claudio Rogerio Tigre Maia ◽  
...  

Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 354-364 ◽  
Author(s):  
Larry Lines ◽  
Henry Tan ◽  
Sven Treitel ◽  
John Beck ◽  
Richard Chambers ◽  
...  

In 1992, there was a collaborative effort in reservoir geophysics involving Amoco, Conoco, Schlumberger, and Stanford University in an attempt to delineate variations in reservoir properties of the Grayburg unit in a West Texas [Formula: see text] pilot at North Cowden Field. Our objective was to go beyond traveltime tomography in characterizing reservoir heterogeneity and flow anisotropy. This effort involved a comprehensive set of measurements to do traveltime tomography, to image reflectors, to analyze channel waves for reservoir continuity, to study shear‐wave splitting for borehole stress‐pattern estimation, and to do seismic anisotropy analysis. All these studies were combined with 3-D surface seismic data and with sonic log interpretation. The results are to be validated in the future with cores and engineering data by history matching of primary, water, and [Formula: see text] injection performance. The implementation of these procedures should provide critical information on reservoir heterogeneities and preferential flow direction. Geophysical methods generally indicated a continuous reservoir zone between wells.


2021 ◽  
Author(s):  
S. Sherry Zhu ◽  
Marta Antoniv ◽  
Martin Poitzsch ◽  
Nouf Aljabri ◽  
Alberto Marsala

Abstract Manual sampling rock cuttings off the shale shaker for lithology and petrophysical characterization is frequently performed during mud logging. Knowing the depth origin where the cuttings were generated is very important for correlating the cuttings to the petrophysical characterization of the formation. It is a challenge to accurately determine the depth origin of the cuttings, especially in horizontal sections and in coiled tubing drilling, where conventional logging while drilling is not accessible. Additionally, even in less challenging drilling conditions, many factors can contribute to an inaccurate assessment of the depth origin of the cuttings. Inaccuracies can be caused by variation of the annulus dimension used to determine the lag time (and thus the depth of the cuttings), by the shifting or scrambling of cuttings during their return trip back to the surface, and by the mislabelling of the cuttings during sampling. In this work, we report the synthesis and application of polystyrenic nanoparticles (NanoTags) in labeling cuttings for depth origin assessment. We have successfully tagged cuttings using two NanoTags during a drilling field test in a carbonate gas well and demonstrated nanogram detection capability of the tags via pyrolysis-GCMS using an internally developed workflow. The cuttings depth determined using our tags correlates well with the depth calculated by conventional mud logging techniques.


Sign in / Sign up

Export Citation Format

Share Document