The permeability structure of fault zones in sedimentary basins: a case study at the Castle Cove Fault, Otway Basin

2018 ◽  
Vol 58 (2) ◽  
pp. 805
Author(s):  
Natalie Debenham ◽  
Natalie J. C. Farrell ◽  
Simon P. Holford ◽  
Rosalind C. King ◽  
David Healy

An understanding of the permeability structure and transmissibility of fault zones can have profound implications for reservoir appraisal and development within petroleum systems. Previous investigations on the permeability structure of fault zones often focus on low-porosity host rocks rather than porous sedimentary rocks which more commonly form reservoirs. We present detailed mineralogical and geomechanical data from porous Cretaceous sandstones (Eumeralla Formation) collected at the Castle Cove Fault in the Otway Basin, south-east Australia. Ten orientated sample blocks were collected in the hanging wall at distances within 0.5–225 m from the fault plane. A progressive increase in porosity (~17–24%), permeability (0.04–2.92 mD), and pore throat size and connectivity was observed as the fault plane was approached. High-resolution thin section analyses revealed an increase in grain-scale fractures and deformation of authigenic clays in sandstones adjacent to the Castle Cove Fault plane. The improvement of the permeability structure of the sandstones is attributed to the formation of grain-scale fractures and the change in clay morphology as a result of faulting. This study demonstrates the importance of detailed mineralogical and geomechanical analyses when attempting to understand the reservoir properties of high porosity, low permeability, and clay-rich sandstones.

The Scottish Caledonides have grown by the accretion of terranes generated somewhere along the Laurentian margin. By the time these terranes had been emplaced along the Scottish sector, they were structurally truncated then reassembled to form an incomplete collage of indirectly related tectonic elements of a destructive margin. The basement to some of these tectonic elements and the basement blocks belonging to the previously accreted Precambrian are of uncertain provenance and a source in the Pan-African craton is possible. As terranes migrate along the orogen they generate in the fault zones and on their periphery a reservoir of mature sediment. This mature sediment is produced because of the recycling produced during the generation and destruction of sedimentary basins developing during terrane translation. At each period of recycling the mature sediments are mixed with less mature sediments yielded from local uplifts generated by the new basin formation. If a large part of the orogen suffers orthogonal closure, giant river systems may form and disperse sediment across terranes. This is likely to have happened during the Devonian-Carboniferous of parts of N. Europe.


1995 ◽  
Vol 13 (2-3) ◽  
pp. 245-252
Author(s):  
J M Beggs

New Zealand's scientific institutions have been restructured so as to be more responsive to the needs of the economy. Exploration for and development of oil and gas resources depend heavily on the geological sciences. In New Zealand, these activities are favoured by a comprehensive, open-file database of the results of previous work, and by a historically publicly funded, in-depth knowledge base of the extensive sedimentary basins. This expertise is now only partially funded by government research contracts, and increasingly undertakes contract work in a range of scientific services to the upstream petroleum sector, both in New Zealand and overseas. By aligning government-funded research programmes with the industry's knowledge needs, there is maximum advantage in improving the understanding of the occurrence of oil and gas resources. A Crown Research Institute can serve as an interface between advances in fundamental geological sciences, and the practical needs of the industry. Current publicly funded programmes of the Institute of Geological and Nuclear Sciences include a series of regional basin studies, nearing completion; and multi-disciplinary team studies related to the various elements of the petroleum systems of New Zealand: source rocks and their maturation, migration and entrapment as a function of basin structure and tectonics, and the distribution and configuration of reservoir systems.


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2014 ◽  
Vol 51 (8) ◽  
pp. 783-796 ◽  
Author(s):  
Simon Weides ◽  
Inga Moeck ◽  
Jacek Majorowicz ◽  
Matthias Grobe

Recent geothermal exploration indicated that the Cambrian Basal Sandstone Unit (BSU) in central Alberta could be a potential target formation for geothermal heat production, due to its depth and extent. Although several studies showed that the BSU in the shallower Western Canada Sedimentary Basin (WCSB) has good reservoir properties, almost no information exists from the deeper WCSB. This study investigated the petrography of the BSU in central Alberta with help of drill cores and thin sections from six wells. Porosity and permeability as important reservoir parameters for geothermal utilization were determined by core testing. The average porosity and permeability of the BSU is 10% and <1 × 10−14 m2, respectively. A zone of high porosity and permeability was identified in a well located in the northern part of the study area. This study presents the first published geomechanical tests of the BSU, which were obtained as input parameters for the simulation of hydraulic stimulation treatments. The BSU has a relatively high unconfined compressive strength (up to 97.7 MPa), high cohesion (up to 69.8 MPa), and a remarkably high friction coefficient (up to 1.22), despite a rather low tensile strength (<5 MPa). An average geothermal gradient of 35.6 °C/km was calculated from about 2000 temperature values. The temperature in the BSU ranges from 65 to 120 °C. Results of this study confirm that the BSU is a potential geothermal target formation, though hydraulic stimulation treatments are required to increase the permeability of the reservoir.


2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

&lt;p&gt;Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 &amp;#177; 5.1 Ma, 59.5 &amp;#177; 5.2 and 101.6 &amp;#177; 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 &amp;#177; 17.5 Ma (MSWD: 7.4), 353.5 &amp;#177; 13.5 Ma (MSWD: 3.1) and 261.2 &amp;#177; 8.5 Ma (MSWD: 5.9). All AFT data fail the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r&lt;sub&gt;mro&lt;/sub&gt; parameter uses grain specific chemistry to predict apatite&amp;#8217;s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r&lt;sub&gt;mro&lt;/sub&gt; values and each sample was separated into two kinetic populations that pass the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test: a less retentive population with ages ranging from 49.3 &amp;#177; 9.3 Ma to 36.4 &amp;#177; 4.7 Ma, and a more retentive population with ages ranging from 157.7 &amp;#177; 19 Ma to 103.3 &amp;#177; 11.8 Ma, with r&lt;sub&gt;mr0&lt;/sub&gt; benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165&amp;#176;C-185&amp;#176;C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75&amp;#176;C-110&amp;#176;C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75&amp;#176;C-95&amp;#176;C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.&lt;/p&gt;


2021 ◽  
Author(s):  
Jiaxu Chen ◽  
Xiaowen Guo

&lt;p&gt;Determining the timings of oil charge in sedimentary basins are essential to understand the evolutionary histories of petroleum systems, especially in sedimentary basins with complicated tectonic evolution and thermal histories. The Ordovician carbonate reservoir in the Tahe Oilfield, which is located in the northern Tarim Basin, comprises the largest marine reservoirs in China with reserves up to 3.2&amp;#215;10&lt;sup&gt;8&lt;/sup&gt; t. This study aims to determine the timings of oil charge in the Ordovician carbonate reservoir in the Tahe Oilfield, Tarim Basin, which basin is subjected to multiple phases of tectonic deformations and oil charge. The phases of calcite veins that contain oil inclusions were systematically investigated by cathodoluminescence observation, in situ rare earth element, C, O, and Sr isotope analyses. The homogenization temperatures of aqueous inclusions that are coeval with oil inclusions were measured to determine the timings of oil charge by combining the burial and geothermal histories. Two phases of calcite veins were judged by the differences in cathodoluminescence color, Ce anomaly, &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O, and &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr values, which might be caused by variations in the water-rock interaction processes during different calcite phases. Primary oil inclusions with yellow fluorescence were observed in the two phases of calcite veins, suggesting two phases of oil charge. By combining the homogenization temperatures of aqueous inclusions with the burial and geothermal histories, the timing of phase I oil charge was inferred to be 336&amp;#8211;312 Ma, and the timing of phase II oil charge was inferred to be 237&amp;#8211;217 Ma.&lt;/p&gt;


2016 ◽  
Author(s):  
Paola Ronchi ◽  
Giovanni Gattolin ◽  
Alfredo Frixa ◽  
Chiara Margliulo

ABSTRACT During the Early Cretaceous South-Atlantic opening, in large lacustrine basins a series of shallow water carbonate platforms grew along lake margins and paleo-highs. These carbonates are giant reservoirs in the Brasil offshore, while in Angola are productive in Cabinda (Lower Congo Basin) and are being explored in the Kwanza Basin with minor success. These carbonates have peculiar facies associations represented mainly by microbialites and coquinas, and are affected by dolomitization which modified the original pore system in different ways. In presence of deep-seated extensional faults, bounding the paleo-highs, the hydrothermal dolomitization affected the reservoir carbonate improving its quality; in fact the hydrothermal dolomite produced the so-called zebra dolomite which is characterized by high porosity and permeability. On the other hand, when there is a limited influx of hydrothermal fluid, some dolomitization is observed, but it did not produce the zebra facies and the poro-perm system has lower quality. These two examples suggest that the understanding of the distribution of deep faults may help in the prediction of the diagenetic effects and resulting reservoir properties.


Sign in / Sign up

Export Citation Format

Share Document