Identification of heat stress-susceptible and -tolerant phenotypes in goats in semiarid tropics

2018 ◽  
Vol 58 (7) ◽  
pp. 1349 ◽  
Author(s):  
P. K. Rout ◽  
R. Kaushik ◽  
N. Ramachandran ◽  
S. K. Jindal

The production performance of livestock is influenced by short-term variation in weather pattern. Goat adapts to varied ecological conditions and maintains productivity; however, wide variation has been observed among individual animals in response to environmental stimuli in a population. The objective of the present study was to identify the contrasting phenotypes on the basis of the physiological response in goats during heat stress. The study utilised 138 Jamunapari and 242 Barbari goats during peak heat-stress period and 82 Jamunapari and Barbari goats under thermo-neutral conditions. The physiological response of goats to different environmental conditions was evaluated by recording various parameters such as rectal temperature (RT), respiration rate (RR) and heart rate (HR). The temperature humidity index varied from 85.36 to 89.80 and from 65.32 to 73.12 during heat-stress and thermo-neutral assessments respectively. There was direct increase in HR and RR (>25%) due to heat stress in the animals, as compared with those in thermo-neutral conditions. On the basis of the distribution of RR and HR values across the breed in the population, the individuals having a RR of ≥50 and a HR of ≥130 are recognised as heat stress-susceptible phenotypes and those having a RR of ≤30 and a HR of ≤100 are recognised as heat stress-tolerant individuals. Different biomarkers were analysed in plasma, while heat-shock proteins and leptin were analysed in tissue extracts by ELISA. C-reactive protein and HSP90 concentrations were significantly (P < 0.05) different between heat stress-susceptible and heat stress-tolerant individuals. Heat-shock proteins HSP70, HSP 90, and C-reactive protein and triiodothyronine were reliable indicators of long-term heat stress. Identification of contrasting phenotypes in regard to heat stress is necessary so as to evaluate the expression pattern at a cellular level, as well as physiological and biochemical parameters.

2017 ◽  
Vol 31 ◽  
pp. 039463201775044 ◽  
Author(s):  
Alicja Kasperska-Zając ◽  
Aleksandra Damasiewicz-Bodzek ◽  
Katarzyna Bieniek ◽  
Agnieszka Skrzypulec-Frankel ◽  
Krystyna Tyrpien-Golder ◽  
...  

Heat shock proteins (Hsp) play a complex role in cytoprotection, inflammation, and function of the immune system. They may be involved in pathogenesis of various diseases. Our aim was to determine circulating Hsp70 and anti-Hsp70 antibodies concentrations in patients with chronic spontaneous urticaria (CSU). Concentrations of Hsp70 in plasma and anti-Hsp70 antibodies in serum as well as serum C-reactive protein (CRP) were measured in CSU patients and in the controls. Plasma Hsp70 concentrations were significantly higher in CSU (all) and mild CSU patients as compared with the controls. Moderate–severe CSU patients tended to show higher Hsp70 concentration as compared with the controls, but not with mild activity of the disease. There were no significant differences in Hsp70 concentration between moderate–severe and mild CSU patients. Serum anti-Hsp70 antibodies concentrations were significantly higher in CSU (all) and mild CSU in comparison to the controls. Association was observed between anti-Hsp70 antibodies and increased CRP concentration; however, no correlation between anti-Hsp70 and Hsp70 concentrations was seen in the patients. It seems that up-regulation of Hsp70 in CSU may induce marked increase in anti-Hsp70 antibodies production, which are accompanied by parallel changes in CRP concentration. We suggest that Hsp may be released in CSU in response to stressful stimuli, such as inflammation.


Author(s):  
Mahmoud Hussien Abou-Deif ◽  
Mohamed Abdel-Salam Rashed ◽  
Kamal Mohamed Khalil ◽  
Fatma El-Sayed Mahmoud

Abstract Background Maize is one of the important cereal food crops in the world. High temperature stress causes adverse influence on plant growth. When plants are exposed to high temperatures, they produce heat shock proteins (HSPs), which may impart a generalized role in tolerance to heat stress. Proteome analysis was performed in plant to assess the changes in protein types and their expression levels under abiotic stress. The purpose of the study is to explore which proteins are involved in the response of the maize plant to heat shock treatment. Results We investigated the responses of abundant proteins of maize leaves, in an Egyptian inbred line of maize “K1”, upon heat stress through two-dimensional electrophoresis (2-DE) on samples of maize leaf proteome. 2-DE technique was used to recognize heat-responsive protein spots using Coomassie Brilliant Blue (CBB) and silver staining. In 2-D analysis of proteins from plants treated at 45 °C for 2 h, the results manifested 59 protein spots (4.3%) which were reproducibly detected as new spots where did not present in the control. In 2D for treated plants for 4 h, 104 protein spots (7.7%) were expressed only under heat stress. Quantification of spot intensities derived from heat treatment showed that twenty protein spots revealed clear differences between the control and the two heat treatments. Nine spots appeared with more intensity after heat treatments than the control, while four spots appeared only after heat treatments. Five spots were clearly induced after heat treatment either at 2 h or 4 h and were chosen for more analysis by LC-MSMS. They were identified as ATPase beta subunit, HSP26, HSP16.9, and unknown HSP/Chaperonin. Conclusion The results revealed that the expressive level of the four heat shock proteins that were detected in this study plays important roles to avoid heat stress in maize plants.


2018 ◽  
Vol 50 (5) ◽  
pp. 1617-1637 ◽  
Author(s):  
Gang-Zheng Wang ◽  
Chao-Jun Ma ◽  
Yi Luo ◽  
Sha-Sha Zhou ◽  
Yan Zhou ◽  
...  

Background/Aims: Heat stress could cause huge losses for Lentinula edodes in China and other Asian cultivation areas. Yet our understanding of mechanism how to defend to heat stress is incomplete. Methods: Using heat-tolerant and heat-sensitive strains of L. edodes, we reported a combined proteome and transcriptome analysis of L. edodes response to 40 °C heat stress for 24 h. Meanwhile, the effect of LeDnaJ on the thermotolerance and IAA (indoleacetic acid) biosynthesis in L. edodes was analyzed via the over-expression method. Results: The proteome results revealed that HSPs (heat shock proteins) such as Hsp40 (DnaJ), Hsp70, Hsp90 and key enzymes involved in tryptophan and IAA metabolism process LeTrpE, LeTrpD, LeTam-1, LeYUCCA were more highly expressed in S606 than in YS3357, demonstrating that HSPs and tryptophan as well as IAA metabolism pathway should play an important role in thermotolerance. Over-expression of LeDnaJ gene in S606 strains showed better tolerance to heat stress. It was also documented that intracellular IAA accumulation of S606 (8-fold up) was more than YS3357 (2-fold up), and exogenous IAA enhanced L. edodes tolerance to heat stress. Conclusion: Our data support the interest of LeTrpE, LeDnaJ, tryptophan and IAA could play a pivotal role in enhancing organism thermotolerance.


2004 ◽  
Vol 41 (2) ◽  
pp. 269-281 ◽  
Author(s):  
Sergey Miroshnichenko ◽  
Joanna Tripp ◽  
Uta zur Nieden ◽  
Dieter Neumann ◽  
Udo Conrad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document