The mobility and transformation of soil nitrogen and the relationships between soil and plant nitrogen and yield at different times following application of various nitrogen fertilizers to sweet corn

1992 ◽  
Vol 43 (7) ◽  
pp. 1643 ◽  
Author(s):  
AA Salardini ◽  
LA Sparrow ◽  
RJ Holloway

The concentration of NH4-N, NO3-N and their sum (mineral N) were monitored 12 times in 1 or 2 weekly intervals in the soil under a sweet corn crop. The samples were taken on the fertilizer band and to depths of 200, 400 and 600 mm. The NO3-N concentration of the sap expressed from the midrib of the leaf opposite and immediately above the primary cob (sap NO3-N) and that of midrib dry matter (midrib NO3-N) were determined weekly. Under the low rainfall and optimized irrigation of this trial the concentration of mineral N in soil to the depth of 400 mm or more was a good predictor of yield response to application of N at 10 of the 12 sampling times. The concentration of either NH4-N or NO3-N in the soil to any depth and the concentration of mineral N in the surface 200 mm correlated with the yield at only a few times of sampling. The concentration of mineral N in the top 200 mm of soil 1 or 2 weeks after top-dressing of N was highly correlated to yield. The concentration of sap NOS-N and midrib NO3-N decreased continuously until harvest. Both these concentrations were significantly correlated with the rates of basal and top-dressed N in most sampling times. These were also strongly correlated to yield 1 or 2 weeks after N top-dressing. Ammonium sulfate, ammonium nitrate and urea gave similar responses in sap NO3-N and midrib NO3-N and in soil nitrogen after 5 weeks when nitrification of fertilizer NH4-N was complete. These observations indicated that soil mineral N, sap NO3-N and midrib NO3-N all offer potential as techniques to predict the yield response of sweet corn to N application. The sap NO3-N test was simpler, quicker, cheaper and more consistent than other tests.

1980 ◽  
Vol 20 (103) ◽  
pp. 220 ◽  
Author(s):  
CL Tuohey ◽  
AD Robson

The effect of medic and non-medic pastures on grain yield and nitrogen content of wheat was studied over 15 seasons on a friable grey clay in the Wimmera. The effects of length and type of pasture ley on grain yield and nitrogen content were closely related to the effects of these treatments on total soil nitrogen. Grain yield was not increased in any season by increasing total soil nitrogen beyond 0.1 10%. The grain yield response to increased total soil nitrogen varied markedly with seasons and most of the variation could be accounted for by variation in November rainfall; grain yield response was greater in years of higher November rainfall. Grain nitrogen content increased with increasing total soil nitrogen over the range studied (0.078% to 0.1 28%). Seasonal variation in grain nitrogen response to total soil nitrogen was mainly associated with variation in September and November rainfall. Higher September rainfall increased the response and higher November rainfall decreased it. The decline in total soil nitrogen that occurred with cropping was strongly correlated with the level of total soil nitrogen before cropping.


1987 ◽  
Vol 38 (1) ◽  
pp. 15 ◽  
Author(s):  
GL Turner ◽  
RR Gault ◽  
L Morthorpe ◽  
DL Chase ◽  
FJ Bergersen

The natural abundances (S15N with reference to atmospheric N2) of the stable isotope of nitrogen (15N) in the total nitrogen and in KCl-extractable mineral nitrogen (typically 96% NO-3-N and 4% NH+4-N) were measured in the surface 10 cm of a transitional red earth at Yanco, N.S.W., and of a grey soil of heavy texture at Trangie, N.S.W. Measurements were made in Autumn (May), prior to planting crops of winter oats, at the time of harvest (October) and in December, using both cropped and continuously fallowed soils. At Trangie, additional measurements were made in September, near the beginning of rapid growth in spring. Despite differences in soil type, pH .and location, both sites showed: (i) S15N in extractable mineral nitrogen varied with time (decreasing from 18.7 to 6.0% in fallowed soil at Yanco, and increasing from 5.8 to 12.0%~ under oats at Trangie), and in cropped versus fallowed treatments (12.0 and 5.3% respectively in December at Trangie), and values were different from those of the total soil nitrogen, in which S15N remained virtually unchanged (over all times and sites, S15N = 8.2 � 0.2 at Trangie); (ii) after removal of the crop, S15N in increments of extractable mineral nitrogen were higher than in the total nitrogen of previously cropped soils, whilst in the continuously fallowed soils, S15N of extractable mineral nitrogen was lower than in the total nitrogen. In addition, at Trangie, S15N in the extractable mineral nitrogen was highest late in growth of the oat crop, and this was reflected in the values for S15N of nitrogen assimilated in the crop. Values of the S15N of plant nitrogen agreed well with the S15N of extractable mineral N when the former were determined in increments of plant N during fixed periods of growth and plotted appropriately (the mid-point between sampling times) in relation to the time courses of changes in the mineral N. These results are discussed in relation to the use of 15N natural abundance techniques for estimating nitrogen fixation by nodulated legumes and in the study of other aspects of soil nitrogen cycle processes.


2010 ◽  
Vol 34 (5) ◽  
pp. 1653-1665 ◽  
Author(s):  
Josiléia Acordi Zanatta ◽  
Cimélio Bayer ◽  
Frederico C.B. Vieira ◽  
Juliana Gomes ◽  
Michely Tomazi

Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.


2007 ◽  
Vol 87 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Laura L Van

The effects of increasing nitrogen (N) fertilization on N use efficiency (NUE) and yield of green bell pepper were assessed in five field experiments over 2004 and 2005. These data were used to evaluate and contrast conclusions drawn from among 12 different NUE indices. In two diferent years (i.e., cool/wet vs. warm/dry), marketable yield response to N application was either positive or no response was observed. Total percent N in the fruit and shoot was lower in non-fertilized plants compared with plants grown in plots that received 70 or 210 kg N ha-1. There were considerable differences among locations in soil mineral N, yield, NUE, and plant N uptake and removal. For all eight fertilizer- and soil-based NUE indices assessed, NUE decreased as N application increased. However, for plant-based NUE indices, there was no difference in NUE values between N treatments. Thus, the interpretation and applicability of NUE depends on the goals of the research and the index used. Key words: Nutrient use efficiency, green bell peppers, harvest index, nitrogen, fertilizer, vegetable


Soil Research ◽  
1992 ◽  
Vol 30 (3) ◽  
pp. 343 ◽  
Author(s):  
ICR Holford ◽  
AD Doyle

Six soil phosphorus tests (lactate, Brayl, Bray2, neutral fluoride, Olsen and Colwell) were regressed against potassium chloride-soluble phosphorus (intensity) and isotopically exchangeable phosphorus (quantity) measured in 59 soils of the northern and central wheat belts of New South Wales. Wheat nutrition experiments on these soils during 1986-89 measured yield responses to phosphate and nitrogen fertilizers. Soil tests varied widely in their correlations with yield responsiveness to phosphate, with the lactate and Bray2 tests accounting for more than twice the variance accounted for by other soil tests. The intensity parameter was also highly correlated but the quantity parameter was not. All soil tests, except Bray1, were very highly correlated with the intensity parameter, so this relationship did not differentiate the relative efficacies of the soil tests. Soil tests were less correlated with the quantity parameter, but those soil tests (neutral fluoride, Olsen and Colwell) that were most highly correlated (r2 > 0.62) with this parameter were most weakly correlated (r2 < 0.29) with yield response. It was concluded therefore that exchangeable phosphorus is not a satisfactory measure of the quantity factor and that an effective soil test for wheat-growing soils will be highly correlated with intensity but not necessarily with exchangeable phosphorus. The critical value of the lactate test was the same (17 mg/kg) as in previous studies with wheat but was lower (14 mg/kg) in 1989 when very low in-crop rainfall occurred. With deeper sampling (15 cm rather than 10 cm) the lactate test was slightly less accurate and the critical value was lower (11 mg/kg).


HortScience ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 520-524 ◽  
Author(s):  
H.H. Krusekopf ◽  
J.P. Mitchell ◽  
T.K. Hartz ◽  
D.M. May ◽  
E.M. Miyao ◽  
...  

Overuse of chemical N fertilizers has been linked to nitrate contamination of both surface and ground water. Excessive use of fertilizer also is an economic loss to the farmer. Typical N application rates for processing tomato (Lycopersicon esculentum Mill.) production in California are 150 to 250 kg·ha-1. The contributions of residual soil NO3-N and in-season N mineralization to plant nutrient status are generally not included in fertilizer input calculations, often resulting in overuse of fertilizer. The primary goal of this research was to determine if the pre-sidedress soil nitrate test (PSNT) could identify fields not requiring sidedress N application to achieve maximum tomato yield; a secondary goal was to evaluate tissue N testing currently used for identifying post-sidedress plant N deficiencies. Field experiments were conducted during 1998 and 1999. Pre-sidedress soil nitrate concentrations were determined to a depth of 60 cm at 10 field sites. N mineralization rate was estimated by aerobic incubation test. Sidedress fertilizer was applied at six incremental rates from 0 to 280 kg·ha-1 N, with six replications per field. At harvest, only four fields showed a fruit yield response to fertilizer application. Within the responsive fields, fruit yields were not increased with sidedress N application above 112 kg·ha-1. Yield response to sidedress N did not occur in fields with pre-sidedress soil NO3-N levels >16 mg·kg-1. Soil sample NO3-N levels from 30 cm and 60 cm sampling depth were strongly correlated. Mineralization was estimated to contribute an average of 60 kg·ha-1 N between sidedressing and harvest. Plant tissue NO3-N concentration was found to be most strongly correlated to plant N deficiency at fruit set growth stage. Dry petiole NO3-N was determined to be a more accurate indicator of plant N status than petiole sap NO3-N measured by a nitrate-selective electrode. The results from this study suggested that N fertilizer inputs could be reduced substantially below current industry norms without reducing yields in fields identified by the PSNT as having residual pre-sidedress soil NO3-N levels >16 mg·kg-1 in the top 60 cm.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 758c-758
Author(s):  
David C. Ditsch ◽  
Richard T. Jones

High-value crops (tobacco and sweet corn) often receive high levels of N fertilizer during the growing season rather than risk yield and/or quality reductions. Following harvest, small-grain winter cover crops are sown to reduce soil erosion and recover residual fertilizer N. Fall cole crops, such as cabbage, grow rapidly in early fall, respond well to N fertilization, and have the potential to be sold for supplemental income. The objectives of this study were to 1) compare fall cabbage and winter rye as scavengers of residual fertilizer N and 2) determine if a relationship between fall soil mineral-N (NO–3 +) levels and fall cabbage yield response to N fertilization exists. Soil mineral N levels following sweet corn and tobacco ranged from 22 to 53 mg·kg–1 in the surface 30-cm and declined with depth. Fall cabbage appeared to be as effective as rye at reducing soil mineral N levels. No fall cabbage dry matter yield response to applied N was measured in 1993 and 1995. However, following sweet corn in 1994, a small cabbage yield response to N at 56 kg·ha–1 was measured when the soil mineral level, prior to fall fertilization, was 22 mg·kg–1.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 844
Author(s):  
Carlos Martín Sastre ◽  
Ruth Barro ◽  
Yolanda González-Arechavala ◽  
Ana Santos-Montes ◽  
Pilar Ciria

Nitrogen fertilizers have been identified in energy crops LCAs as the main contributors to global warming, as well as to many other environmental impacts. The distinct production process and application emissions of nitrogen fertilizer types for top dressing produce different GHG savings when energy crops value chains are compared to fossil energy alternatives. In this study, three types of fertilizers (calcium ammonium nitrate, urea and ammonium sulphate) at N top dressing rates of 80 kg N/ha are used to grow rye for electricity generation under the conditions of the Continental Mediterranean climate of central-northern Spain. Complete LCAs for the whole value chain based on real data were performed in conjunction with soil nitrogen balances (SNBs) to assess the accomplishment of European Union (EU) GHG savings sustainability criteria, as well as the sustainability of fertilization practices for soil nitrogen stocks. The results obtained can provide interesting insights for policy making, since calcium ammonium nitrate, the most common fertilizer for rye crops, led to 66% GHG savings, as opposed to the 69% achieved when applying urea and 77% when ammonium sulphate was used. Nevertheless, the three fertilizers produced annual soil deficits greater than 50 kg N/ha. In order to ensure savings above 80%, as required by the EU sustainability criteria, and sustainable SNBs, additional optimization measures should be taken at key points of the value chain.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1300
Author(s):  
Janusz Prusiński ◽  
Anna Baturo-Cieśniewska ◽  
Magdalena Borowska

A growing interest in soybean cultivation in Poland has been observed in the recent years, however it faces a lot of difficulties resulting from a poorly understood effectiveness of plant nitrogen fertilization and from the introduction of Bradyrhizobium japonicum to the environment. The aim of the study was to evaluate the consistency of response of two soybean cultivars to three different rates of mineral N fertilization and two seed inoculation treatments with B. japonicum in field conditions over four years regardless of previous B. japonicum presence in the soil. A highly-diversified-over-years rainfall and temperature in the growing season do not allow for a definite statement of the differences resulting from seed inoculation and mineral N fertilization applied separately or jointly in soybean. A high sensitivity of the nodulation process to rainfall deficits was noted, which resulted in a decreased amount of B. japonicum DNA measured in qPCR and dry matter of nodules. ‘Annushka’ demonstrated a higher yield of seeds and protein, higher plants and the 1st pod setting. ‘Aldana’, due to a significant decrease in plant density, produced a higher number of pods, seeds per pod and the 1000 seed weight per plant. Both cultivars responded with an increase in the seed yield after seed inoculation with HiStick, also with an application of 30 and 60 kg N, as well as with Nitragina with 60 kg N.


Sign in / Sign up

Export Citation Format

Share Document