Evaluation of different nitrogen use efficiency indices using field-grown green bell peppers (Capsicum annuum L.)

2007 ◽  
Vol 87 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Laura L Van

The effects of increasing nitrogen (N) fertilization on N use efficiency (NUE) and yield of green bell pepper were assessed in five field experiments over 2004 and 2005. These data were used to evaluate and contrast conclusions drawn from among 12 different NUE indices. In two diferent years (i.e., cool/wet vs. warm/dry), marketable yield response to N application was either positive or no response was observed. Total percent N in the fruit and shoot was lower in non-fertilized plants compared with plants grown in plots that received 70 or 210 kg N ha-1. There were considerable differences among locations in soil mineral N, yield, NUE, and plant N uptake and removal. For all eight fertilizer- and soil-based NUE indices assessed, NUE decreased as N application increased. However, for plant-based NUE indices, there was no difference in NUE values between N treatments. Thus, the interpretation and applicability of NUE depends on the goals of the research and the index used. Key words: Nutrient use efficiency, green bell peppers, harvest index, nitrogen, fertilizer, vegetable

Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 685 ◽  
Author(s):  
PE Bacon ◽  
LG Lewin ◽  
JW McGarity ◽  
EH Hoult ◽  
D Alter

The fate of 15N-labelled fertilizer applied to rice (Oryza sativa L) was studied in microplots established within two field experiments comprising a range of stubble levels, stubble management techniques, N application rates and times. The first experiment investigated uptake of soil and fertilizer N in plots where application of 0 or 100 kg N ha-1 to the previous rice crop had produced 11.5 and 16.1 t ha-1 of stubble respectively. The stubble was then treated in one of four ways-burn (no till); burn then cultivated; incorporated in autumn or incorporated at sawing. Microplots within these large plots received 60 kg ha-1 of 5% 15N enriched urea at sowing, just prior to permanent flood (PF), or just after panicle initiation (PI) of the second crop. The second experiment was undertaken within a field in which half of the plots had stubble from the previous three rice crops burned, while the other plots had all stubble incorporated. In the fourth successive rice crop, the two stubble management systems were factorially combined with three N rates (0, 70 or 140 kg N ha-1) and three application times (PF, PI or a 50 : 50 split between PF and PI). Nitrogen uptake and retention in the soil were studied within 15N-labelled microplots established within each of these large plots. Only 4% of the 15N applied at sowing in the first experiment was recovered in the rice crop, while delaying N application to PF or PI increased this to an average of 20% and 44% respectively over the two experiments. The doubling of N application rate doubled fertilizer N uptake and also increased uptake of soil N at maturity by 12 kgN ha-1. Three years of stubble incorporation increased average uptake of fertilizer and soil N in the second experiment by 5 and 12 kg N ha-1 respectively. In both experiments, the soil was the major source of N, contributing 66-96% of total N uptake. On average, in the fourth crop, 20% of fertilizer N was in the grain, 12% in the straw and 3% in the roots, while 23% was located in the top 300 mm of soil. A further 3% was in the soil below 300 mm. The remaining 39% was lost, presumably by denitrification.


2012 ◽  
Vol 58 (No. 5) ◽  
pp. 211-216 ◽  
Author(s):  
P. Lü ◽  
J.W. Zhang ◽  
L.B. Jin ◽  
W. Liu ◽  
S.T. Dong ◽  
...  

This study aims to explore the optimum nitrogen (N) application method by analyzing effects of variable N application stages and ratios on the N absorption and translocation of high-yield summer maize (DH661). The study included field experiments and <sup>15</sup>N isotopic dilutions for pot experiments. Results showed that the yield was not increased in a one-off N application at the jointing stage. The uptake of fertilizer-derived N in the grain increased with the increasing of N applied times. Compared to a single or double application, total N uptake (N<sub>up</sub>) and biomass increased significantly by supplying N at the six-leaf stage (V6), ten-leaf stage (V10) and 10 days after anthesis in ratios of 3:5:2 and 2:4:4. The fertilizer-derived recovery rates were 67.5% and 78.1%, respectively. The uptake and utilization of fertilizer-derived N was enhanced by increasing the recovery rate of N supplied after anthesis, and reducing the absorption of soil-derived N. Therefore, the 2:4:4 application ratios was the optimal N application method. &nbsp;


1997 ◽  
Vol 77 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Thi Sen Tran ◽  
Marcel Giroux ◽  
Michel P. Cescas

The main objective of this study was to compare the recovery of 15N-labelled fertilizer by different methods of N application and N rates. Field experiments were carried out for 3 yr at Saint-Hyacinthe (Saint-Damase, Du Contour, Sainte-Rosalie soils) and at Saint-Lambert, Lévis (Le Bras soil). Grain corn (cv. Pride K228, 2700 CHU) and silage corn (cv. Hyland 3251, 2300 CHU) were grown at Saint-Hyacinthe and Saint-Lambert, respectively. In 1988 and 1989, field trials were arranged in a randomized complete bloc design consisting of five treatments in three replications: control 0 N and four split application methods of N fertilizer. Labelled 15NH4 15NO3 fertilizer was applied either banded at planting as starter (D), broadcast and incorporated before planting (Vs) or sidedressing between rows at V6 to V8 stages of corn (Bp). In 1990 field trials, treatments consisted of four N rates (0, 60, 120 and 180 kg N ha−1) labelled with 15NH4 15NO3. The effect of N rates on yield and N uptake by corn was significant in all years. However, the effect of application methods was significant only on the soil Du Contour in 1989 where corn grain yield was highest when N fertilizer was split as starter and sidedress band. The CUR of N fertilizer applied broadcast before planting (42 to 48%) was generally lower than sidedressing band application (43 to 54%). N fertilizer recovery in the starter showed also high CUR values (45 to 60%). Consequently, it is recommended to split N fertilizers and apply in band to increase efficiency for grain corn. The CUR values decreased with N rates only in Le Bras soil in 1990. Residual N fertilizer increased from 27 to 103 kg N ha−1 for 60 and 180 kg N ha−1 rates, respectively. Consequently, the environmental impact of N fertilization may increased with high N rate. Key words: Grain corn, silage corn, 15N recovery, fertilizer N split application


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 278 ◽  
Author(s):  
Ida Di Mola ◽  
Eugenio Cozzolino ◽  
Lucia Ottaiano ◽  
Sabrina Nocerino ◽  
Youssef Rouphael ◽  
...  

An optimized nitrogen (N) fertilization may have a positive effect on leafy vegetables by increasing growth, yield and nutrient content of plants. Nevertheless, crop performance must be coupled with an increase in Nitrogen Use Efficiency (NUE) in order to limit external N inputs and to avoid N surpluses associated with environmental and health problems. The aim of the current study was to assess the effects of a legume-derived plant hydrolysates (LDPH; Trainer®) and N fertilization levels (0, 2.25 and 4.5 g N m−2 for spinach and 0, 2.5 and 5.0 g N m−2 for lamb’s lettuce; N0%, N50%, N100%, respectively) on agronomical, biochemical, qualitative responses and NUE of these two important greenhouse leafy vegetables. Spinach and lamb’s lettuce were sprayed four times during the growing period (at a concentration of 4 mL L−1 of LDPH). In baby spinach, the LDPH application elicited a significant increase at the three levels of N fertilization: +16.8%, +14.2%, and 39.4% at 0, 2.25 and 4.5 g N m−2, respectively. Interestingly, in lamb’s lettuce, the N50% plants treated with LDPH reached similar values of marketable yield in comparison to treated and non-treated plants under N100% conditions. The presumed mechanism involved in the enhancement of yield response in the two leafy greens could be associated to a better activity of the photosystem II (higher SPAD index), biochemical (higher content of chlorophyll a, b and total) and leaf nitrate status. The foliar application of LDPH produced a major fortification in lipophilic and hydrophilic antioxidant activities (+11.6 and 6.3% for spinach and lamb’s lettuce, respectively). The biostimulant application also improved N-use efficiency and N-uptake efficiency compared to untreated plants: +17.8% and +18.8%, and +50% and +73.3%, for spinach and lamb’s lettuce, respectively.


1998 ◽  
Vol 130 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. SIELING ◽  
H. SCHRÖDER ◽  
H. HANUS

In NW Europe, autumn-grown oilseed rape normally receives nitrogen (N) in autumn as seedbed N and in the spring as a split application at the beginning of growth and at stem elongation. In the growing seasons 1990/91 to 1992/93, the effects of slurry and mineral N fertilization on yield, N uptake by the seed and apparent N-use efficiency (NUE) by oilseed rape (Brassica napus) were investigated in a factorial field experiment at Hohenschulen Experimental Station near Kiel, NW Germany. The crop rotation was oilseed rape–winter wheat–winter barley, and soil tillage (conservation tillage without ploughing, conventional tillage), application of pig slurry (none, autumn, spring, autumn+spring) and mineral N fertilization (0 to 200 kg N ha−1) were all varied. Each year, the treatments were applied to all three crops of the rotation and were located on the same plots.Between the years, average seed yield ranged from 3·04 to 3·78 t ha−1, while the corresponding N uptake by the seed varied from 107 to 131 kg N ha−1. Slurry application in spring increased the seed yield and N uptake by the seed in all years, whereas the effect of autumn slurry alone or in combination with spring slurry was negligible. Mineral N fertilizer increased seed yield and N uptake by the seeds except in 1991/92, when N amounts exceeded 160 kg N ha−1. No significant slurry×mineral N interaction occurred. Apparent NUE of mineral N was larger than that of slurry N, but decreased with increasing mineral fertilizer N rates. Only 5% of the autumn slurry N was apparently utilized by the seeds, compared with 24% of the spring slurry N.Despite its ability to take up substantial quantities of N before the winter, oilseed rape utilized very little autumn slurry N for seed production. To minimize environmental impacts, slurry should be applied in the spring, when plants are more able to use N for yield formation, even if NUE of slurry N is lower than that of mineral N. However, since NUE changes with the amount of applied N, it is difficult to find the best combination of slurry and mineral N fertilization to avoid negative environmental effects.


1991 ◽  
Vol 71 (2) ◽  
pp. 227-238 ◽  
Author(s):  
W. F. Nuttall ◽  
S. S. Malhi

Field experiments were conducted for 3 yr on a Black Chernozemic soil at Melfort in northeastern Saskatchewan to determine the yield response and N uptake of seven crop/cultivars to autumn and spring applied N. The crop/cultivars were, rapeseed (Brassica napus L. 'Midas' and 'Target'; Brassica campestris L. 'Torch' and 'Echo'); wheat (Triticum aestivum L. 'Manitou'); barley (Hordeum vulgare L. 'Conquest') and flax (Linum usitatissimum L. 'Noralta') (main plots). Ammonium nitrate fertilizer treatments consisted of three rates of autumn broadcast N, 0, 34 and 67 kg N ha−1 (subplots), combined with N at 0, 11, 22, 45, 67 and 134 kg N ha−1 side-banded with seed in the spring (subsubplots). At the 67 kg N ha−1 rate, autumn application was inferior to spring application in increasing grain yield and N uptake for three of the seven crops (Torch and Echo rapeseed and Manitou wheat). Nitrogen fertilizer applied at 134 kg N ha−1 in spring produced grain yields that were not significantly higher than the split application of 67 kg N ha−1 applied in autumn and 67 kg N ha−1 applied in spring. All crops responded to spring applied N and continued to increase in yield up to the high rates of 67 or 134 kg N ha−1. Key words: Time of N application, N, crops, cultivars


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 752
Author(s):  
Aliasghar Montazar ◽  
Daniel Geisseler ◽  
Michael Cahn

Nitrogen (N) and irrigation water must be effectively used in mineral soils to produce carrots with high yield and minimal environmental impact. This study attempts to identify optimal N and irrigation management practices for low desert carrot production in California by investigating consumptive water use and N uptake and removal rates in fresh market and processing carrots. Field experiments were conducted at the University of California Desert Research and Extension Center and nine farmer fields during two growing seasons. The actual evapotranspiration (ETa) was measured using the residual energy balance method with a combination of surface renewal and eddy covariance equipment. Crop canopy coverage, actual soil nitrate-N from multiple depths as well as total N percentage, dry matter, and fresh biomass in roots and tops were measured over the growing seasons. The length of the crop season had a wide range amongst the experimental sites: from a 128-day period in a processing carrot field to as long as 193 days in a fresh market carrot field. The seasonal ETa varied between 305.8 mm at a silty loam furrow irrigated processing carrot field and 486.2 mm at a sandy clay loam sprinkler irrigated fresh market field. The total N accumulated at harvest ranged between 205.4 kg ha−1 (nearly 52% in roots) and 350.5 kg ha−1 (nearly 64% in roots). While the mean value of nitrogen removed by carrot roots varied from 1.24 to 1.73 kg N/Mg carrot roots, it appears that more N was applied than was removed by carrot roots at all sites. Within the range of N application rates examined at the experimental sites, there was no significant relationship between carrot fresh root yield and N application rate, although the results suggested a positive effect of N application on carrot yield. Sufficient soil N availability over the growing season and the lack of significant yield response to N application illuminated that optimal N rates are likely less than the total amounts of N applied at most sites.


1998 ◽  
Vol 131 (4) ◽  
pp. 375-387 ◽  
Author(s):  
K. SIELING ◽  
H. SCHRÖDER ◽  
M. FINCK ◽  
H. HANUS

Increasing the efficiency with which crops use supplied nitrogen (N) can minimize the impact on the environment. In the growing seasons 1990/91 to 1992/93, the effects of different cropping systems on yield, N uptake by the grain and apparent N-use efficiency (NUE) of the grain of winter wheat and winter barley were investigated in a factorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape–winter wheat–winter barley, and soil tillage (conservation tillage without ploughing, conventional tillage), application of pig slurry (none, autumn, spring, autumn+spring), mineral N fertilization (0–240 kg N ha−1) and application of fungicides (none, applications against pathogens of the stems, leaves and ears) were all varied. Each year, the treatments were applied to all three crops of the rotation and were located on the same plots.Averaged over all factors, wheat yield was >7 t ha−1 dry matter in all years and N uptake of the harvested grain varied between 140 and 168 kg N ha−1. Pig slurry application in autumn increased grain yield and N uptake more than spring slurry in two out of three years. Mineral N unfertilized wheat yielded only 5·3–6·3 t ha−1 depending on the year, mineral N fertilization increased wheat yield up to 8 t ha−1. Barley yield was lower than wheat yield, ranging from 4·5 t ha−1 in 1993 to 6·3 t ha−1 in 1992. Unlike wheat, spring slurry N affected barley yield and N uptake more than autumn slurry.Wheat apparently utilized 12–21% and barley up to 13% of the applied slurry N for its grain development. In 1991, the highest apparent slurry N-use efficiency (SNUE) of wheat and barley occurred after the late spring slurry application. However, in the following years, autumn SNUE of wheat was similar to (1992) or higher than (1993) spring SNUE, presumably because of vigorous tiller growth before winter. Additionally applied mineral fertilizer N decreased SNUE.Apparent mineral fertilizer N-use efficiency (FNUE) was higher than SNUE and ranged in wheat from 40 to 59% and in barley between 19 and 37% of the applied mineral fertilizer N. FNUE decreased with increasing N fertilization.To improve the N-use efficiency of both slurry N and mineral fertilizer N, more information is needed about the combined use of both N sources, with special emphasis on split applications of slurry as is common practice for mineral N fertilizer.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 121 ◽  
Author(s):  
Donato Visconti ◽  
Nunzio Fiorentino ◽  
Eugenio Cozzolino ◽  
Sheridan Lois Woo ◽  
Massimo Fagnano ◽  
...  

The present study addresses the effects of Trichoderma-based biostimulants and nitrogen (N) fertilization levels on agronomic performance and functional quality of two important greenhouse leafy vegetables: lettuce and rocket. A factorial analysis of the relative effects of Trichoderma-based biostimulants (Trichoderma harzianum strain T22 and Trichoderma virens strain GV41) and N fertilization levels (sub-optimal, optimal, and supra-optimal) was carried out to evaluate crop productive behavior (marketable and unmarketable yields, leaf dry matter content, and biomass production), nitrogen nutrition (N uptake, apparent N recovery, and nitrogen use efficiency (NUE)) as well as phytochemical qualitative components (antioxidant activity and total polyphenols). The soil plant analysis development (SPAD) index in both leafy vegetables and leaf colorimetry only in rocket were mainly affected by N fertilization levels but not by Trichoderma-based biostimulants. The contribution of native mineral N was 60 and 100 kg N ha−1 of the total uptake in lettuce and rocket, respectively, and N surpluses were observed in both crops, even under optimal fertilization conditions. Trichoderma virens GV41-based biostimulant increased lettuce marketable yield and biomass production, both under optimal and sub-optimal fertilization. In addition, the same treatment increased NUE up to 116% under recommended N fertilization, that was also associated to an increase in phenol content and antioxidant activity. Rocket showed a clear effect of the Trichoderma virens GV41 treatment, only in absence of fertilization, demonstrating an increase in marketable yield and N uptake. Thus, the inoculation of rocket with this Trichoderma biostimulant can be considered as a useful management tool in leafy vegetable cropping systems for the efficient use of residual fertilizers from previous crops, enhancing NUE within the crop rotations. Nevertheless, the application of microbial biostimulant treatments requires good monitoring of soil N fertility in order to avoid an overexploitation of soil N supplying potential.


1993 ◽  
Vol 73 (2) ◽  
pp. 477-493 ◽  
Author(s):  
Théophile Paré ◽  
François P. Chalifour ◽  
Josée Bourassa ◽  
Hani Antoun

The costs of N fertilizer and concern for sustainable agriculture have led to renewed interest in the use of legumes as a source of N for succeeding non-legume crops. In this regard, field experiments were conducted in 1987,1988 and 1989 on a Rivière-du-Loup sandy gravelly loam (Ferro-Humic Podzol) at St-Anselme and on a Chaloupe silty loam (Orthic Humic Gleysol) at Deschambault in eastern Quebec, Canada, to determine the effects of 1 or 2 years of faba bean (Vicia faba L.) Outlook and soybean (Glycine max [L.] Merr.) Maple Amber on subsequent forage-corn (Zea mays L.) Pioneer 3979 dry matter yields (DMY) and N uptake, and the N-fertilizer replacement values (NFRV) of the different crop sequences. Corn in monoculture or following a legume was fertilized with 0, 50, 100 or 150 kg N ha−1, and legumes received 20 kg N ha−1 as NH4NO3. In 1989, at both locations, the DMY and N uptake of forage corn in monoculture or following 2 consecutive years of soybean, or subsequent to soybean and faba bean grown 2 years previously, increased linearly with N application. After 2 consecutive years of faba bean, the DMY were not affected by increasing fertilization, but the N uptake generally increased proportionally to N application. The estimated NFRV (on a DMY basis) after 2 consecutive years of faba bean varied from 60 to 125 kg N ha−1 at St-Anselme, and from 100 to 110 kg N ha−1 at Deschambault for the ears and stover, respectively. The NFRV estimated for the same cropping sequence varied from 122 to 129 kg N ha−1 at St-Anselme and from 104 to 131 kg N ha−1 at Deschambault, for the stover and ears, respectively, on the basis of N uptake. For 2 consecutive years of soybean, it averaged 14 kg N ha−1 at St-Anselme and 33 kg N ha−1 at Deschambault, on the basis of the DMY; when based on the N uptake, the NFRV of 2 consecutive years of soybean varied from 14 to 21 kg N ha−1 at St-Anselme and from 0 to 15 kg N ha−1 at Deschambault for the stover and ears, respectively. The average NFRV (based on the DMY) for faba bean grown 2 years previously were 17 kg N ha−1 at St-Anselme but NFRV varied from 0 to 16 kg N ha−1 at Deschambault for stover and ears, respectively; on the basis of N uptake, the NFRV for the same crop sequence averaged 24 kg N ha−1 at St-Anselme, but varied from 0 to 15 kg N ha−1 at Deschambault for the stover and ears, respectively. Key words: Corn, faba bean, soybean, crop sequence, N fertilization


Sign in / Sign up

Export Citation Format

Share Document