Study of groundwater flow in sediments and regolith defined by airborne geophysical surveys.

2007 ◽  
Vol 2007 (1) ◽  
pp. 1-5
Author(s):  
G.J. Street ◽  
S. Abbott
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


2021 ◽  
Author(s):  
Uwe Morgenstern ◽  
Zara Rawlinson

<p>Geologic data to provide information on the functioning of aquifers is often scars. For the aquifers underlying the Heretaunga Plains, Hawkes Bay, one of New Zealand’s most important groundwater systems, we used groundwater age (tritium, SF6, 14C) to inform the geologic model and to provide information on groundwater flow through alternating strata of permeable river gravel beds and fine impermeable beds that form an interconnected unconfined–confined aquifer system with complex groundwater flow processes.</p><p>The aquifers are a result of geological processes responding to climate change cycles from cold glacial when sea level was more than 100m below present sea level, to warm interglacial periods with sea level similar to present day. Glacial climate strata are river gravel, sand and silt deposits and include the artesian aquifers. The interglacial strata form the aquicludes and are marine sand, silt, and clay deposits with interbedded estuarine, swamp and coastal fluvial silt, clay, peat and gravel deposits.</p><p>We have re-visited tracer data sampled during the drilling of multi-level observation well in the early 1990s, and collected new samples from these multi-level bores in order to understand in 3D the groundwater recharge sources, groundwater recharge and flow rates, connection to the rivers, and potential groundwater discharge out to sea. Consistently young water (c. 25 years) at depth greater than 100m indicates preferential flow paths, likely related to paleo-river channels. The flow pattern obtained from the water tracer data improves the geologic information from the drill-holes, and fits with information from recent airborne transient electromagnetic (SkyTEM) geophysical surveys.</p>


2019 ◽  
Vol 38 (6) ◽  
pp. 460-464
Author(s):  
Frank Dale Morgan ◽  
Saleh Al Nasser ◽  
Ruel Jerry ◽  
Ananias Verneuil

The Cocoa Grove Group is planning a housing development on approximately 5.5 acres in the area of Saphire, Diamond, Saint Lucia. Directly downhill of the property is a Water and Sewage Company (WASCO) spring that supplies drinking water to the town of Soufriere. This potable water is of high purity. Concern was expressed by WASCO as to the advisability of implementing development directly above the emanation of the spring. The obvious concerns were the possible change in flow volumes and chemical and biological contamination if a housing development was completed. F. D. Morgan and the Saint Lucia Water Resources personnel representing the Cocoa Grove Group discussed whether geophysical methods could be used to map the direction of groundwater flow into the spring. The group agreed that geophysical methods could be used in an attempt to delineate the underground flow paths into the spring. It was made clear that investigations could produce results that could be either favorable or unfavorable to the proposed development. Consequently, geophysical surveys were planned and executed in the area of concern to measure resistivity and self potentials. The geophysics did not indicate evidence of substantial fluid flow into the spring. However, we were able to locate the main water supply from the top of Terre Blanche down toward the spring. The flow comes downhill via a significant geologic fracture that is hidden from sight in the dense tree cover. Recommendations were made that it is relatively safe to develop the site as intended with respect to possible water contamination. In conclusion, we also recommended that WASCO take water from another point of a topographic step on Terre Blanche. Doing so would reduce the contamination risk essentially to zero from the planned housing development area.


2019 ◽  
Vol 122 (3) ◽  
pp. 343-356
Author(s):  
R.C. Minnaar ◽  
M.A. Dippenaar

Abstract Faults and dolerite dykes within Basement- and Karoo-aquifers in northern Mozambique may increase groundwater occurrence but may also be barriers to groundwater flow. Should observation boreholes drilled into regional and local faults as well as dykes show a response to aquifer testing, it would be deduced that these hydrogeological discontinuities are not barriers to groundwater flow. The approach adopted for this study included a sequential process involving data acquisition through a hydrogeological fieldwork programme consisting of geophysical surveys, borehole drilling, aquifer testing, and groundwater level monitoring. The Zambezi Border and geological contact faults were characterised by high variability in hydraulic properties. Aquifer testing resulted in drawdown in observation boreholes as well as a reduction in piezometric surface in the installed vibrating wire piezometers located in different aquifer units, indicating the Zambezi Border- and geological contact-faults were not barriers to groundwater flow. Not all the northwest-southeast trending dykes acted as barriers to groundwater flow, as there were discreet intervals with relatively high permeability present.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2016 ◽  
Vol 41 ◽  
pp. 10-13 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Silvia Lombi ◽  
Alessandra Piana

Sign in / Sign up

Export Citation Format

Share Document