scholarly journals Characterisation of focused gas hydrate accumulations from the Pegasus Basin, New Zealand, using high-resolution and conventional seismic data

2018 ◽  
Vol 2018 (1) ◽  
pp. 1-4
Author(s):  
Andrew R. Gorman ◽  
Patrick T. Fletcher ◽  
Dylan Baker ◽  
Douglas R.A. Fraser ◽  
Gareth J. Crutchley ◽  
...  
2020 ◽  
Author(s):  
Malin Waage ◽  
Stefan Bünz ◽  
Kate Waghorn ◽  
Sunny Singhorha ◽  
Pavel Serov

<p>The transition from gas hydrate to gas-bearing sediments at the base of the hydrate stability zone (BHSZ) is commonly identified on seismic data as a bottom-simulating reflection (BSR). At this boundary, phase transitions driven by thermal effects, pressure alternations, and gas and water flux exist. Sedimentation, erosion, subsidence, uplift, variations in bottom water temperature or heat flow cause changes in marine gas hydrate stability leading to expansion or reduction of gas hydrate accumulations and associated free gas accumulations. Pressure build-up in gas accumulations trapped beneath the hydrate layer may eventually lead to fracturing of hydrate-bearing sediments that enables advection of fluids into the hydrate layer and potentially seabed seepage. Depletion of gas along zones of weakness creates hydraulic gradients in the free gas zone where gas is forced to migrate along the lower hydrate boundary towards these weakness zones. However, due to lack of “real time” data, the magnitude and timescales of processes at the gas hydrate – gas contact zone remains largely unknown. Here we show results of high resolution 4D seismic surveys at a prominent Arctic gas hydrate accumulation – Vestnesa ridge - capturing dynamics of the gas hydrate and free gas accumulations over 5 years. The 4D time-lapse seismic method has the potential to identify and monitor fluid movement in the subsurface over certain time intervals. Although conventional 4D seismic has a long history of application to monitor fluid changes in petroleum reservoirs, high-resolution seismic data (20-300 Hz) as a tool for 4D fluid monitoring of natural geological processes has been recently identified.<br><br>Our 4D data set consists of four high-resolution P-Cable 3D seismic surveys acquired between 2012 and 2017 in the eastern segment of Vestnesa Ridge. Vestnesa Ridge has an active fluid and gas hydrate system in a contourite drift setting near the Knipovich Ridge offshore W-Svalbard. Large gas flares, ~800 m tall rise from seafloor pockmarks (~700 m diameter) at the ridge axis. Beneath the pockmarks, gas chimneys pierce the hydrate stability zone, and a strong, widespread BSR occurs at depth of 160-180 m bsf. 4D seismic datasets reveal changes in subsurface fluid distribution near the BHSZ on Vestnesa Ridge. In particular, the amplitude along the BSR reflection appears to change across surveys. Disappearance of bright reflections suggest that gas-rich fluids have escaped the free gas zone and possibly migrated into the hydrate stability zone and contributed to a gas hydrate accumulation, or alternatively, migrated laterally along the BSR. Appearance of bright reflection might also indicate lateral migration, ongoing microbial or thermogenic gas supply or be related to other phase transitions. We document that faults, chimneys and lithology constrain these anomalies imposing yet another control on vertical and lateral gas migration and accumulation. These time-lapse differences suggest that (1) we can resolve fluid changes on a year-year timescale in this natural seepage system using high-resolution P-Cable data and (2) that fluids accumulate at, migrate to and migrate from the BHSZ over the same time scale.</p>


2019 ◽  
Vol 7 (3) ◽  
pp. SG11-SG22 ◽  
Author(s):  
Heather Bedle

Gas hydrates in the oceanic subsurface are often difficult to image with reflection seismic data, particularly when the strata run parallel to the seafloor and in regions that lack the presence of a bottom-simulating reflector (BSR). To address and understand these imaging complications, rock-physics modeling and seismic attribute analysis are performed on modern 2D lines in the Pegasus Basin in New Zealand, where the BSR is not continuously imaged. Based on rock-physics and seismic analyses, several seismic attribute methods identify weak BSR reflections, with the far-angle stack data being particularly effective. Rock modeling results demonstrate that far-offset seismic data are critical in improving the imaging and interpretation of the base of the gas hydrate stability zone. The rock-physics modeling results are applied to the Pegasus 2009 2D data set that reveals a very weak seismic reflection at the base of the hydrates in the far-angle stack. This often-discontinuous reflection is significantly weaker in amplitude than typical BSRs associated with hydrates. These weak far-angle stack BSRs often do not appear clearly in full stack data, the most commonly interpreted seismic data type. Additional amplitude variation with angle (AVA) attribute analyses provide insight into identifying the presence of gas hydrates in regions lacking a strong BSR. Although dozens of seismic attributes were investigated for their ability to reveal weak reflections at the base of the gas hydrate stability zone, those that enhance class 2 AVA anomalies were most effective, particularly the seismic fluid factor attribute.


2020 ◽  
Author(s):  
Katja Heeschen ◽  
Stefan Schloemer ◽  
Marta Torres ◽  
Ann E Cook ◽  
Liz Screation ◽  
...  

<p>The investigation of the gas hydrate system and hydrocarbon distribution were targets of IODP expeditions 372 and 375 on the Hikurangi Margin offshore New Zealand. Isotopic and molecular signatures clearly indicate a biogenic signature of methane at all sites drilled along a section crossing the accretionary wedge and basin sediments. The gas void and headspace samples from depth of a few meters up to 600 m below the seafloor have varying amounts of light hydrocarbons with high amounts of methane and changing ratios of C<sub>2</sub>:C<sub>3</sub>. The best example is the high-resolution profile gained from gas voids collected at Site U1517. Drilling at U1517 reached through the creeping part of the Tuaheni Landslide Complex (TLC), the base of the slide mass, and the Bottom Simulation Reflector (BSR) just above the base of the hole. Whereas gas hydrates could not be observed macroscopically, the distribution of gas hydrates was determined by logging while drilling (LWD) and pore water data revealing the occurrence of gas hydrates at roughly 105 – 160 mbsf with elevated saturations in thin coarse-grained sediments. The application of cryo-Scanning Electric Microscopy (cryo-SEM) on samples preserved in liquid nitrogen enabled the visualization of gas hydrates.</p><p> </p><p>At Site U1517 the high-resolution void sampling reveals molecular and isotopic fractionation of hydrocarbons in close relation to the gas hydrate occurrences and allows for drawing conclusions on the recent history of the gas hydrate system and absence of free gas transport from below at the site. The molecular and isotopic composition further indicates ongoing propanogenesis.</p>


2016 ◽  
Vol 4 (1) ◽  
pp. SA1-SA12 ◽  
Author(s):  
Gareth J. Crutchley ◽  
Guy Maslen ◽  
Ingo A. Pecher ◽  
Joshu J. Mountjoy

The existence of free gas and gas hydrate in the pore spaces of marine sediments causes changes in acoustic velocities that overprint the background lithological velocities of the sediments themselves. Much previous work has determined that such velocity overprinting, if sufficiently pronounced, can be resolved with conventional velocity analysis from long-offset, multichannel seismic data. We used 2D seismic data from a gas hydrate province at the southern end of New Zealand’s Hikurangi subduction margin to describe a workflow for high-resolution velocity analysis that delivered detailed velocity models of shallow marine sediments and their coincident gas hydrate systems. The results showed examples of pronounced low-velocity zones caused by free gas ponding beneath the hydrate layer, as well as high-velocity zones related to gas hydrate deposits. For the seismic interpreter of a gas hydrate system, the velocity results represent an extra “layer” for interpretation that provides important information about the distribution of free gas and gas hydrate. By combining the velocity information from the seismic transect with geologic samples of the seafloor and an understanding of sedimentary processes, we have determined that high gas hydrate concentrations preferentially form within coarse-grained sediments at the proximal end of the Hikurangi Channel. Finer grained sediments expected elsewhere along the seismic transect might preclude the deposition of similarly high gas hydrate concentrations away from the channel.


2020 ◽  
Author(s):  
David Cox ◽  
Andrew M. W. Newton ◽  
Paul C. Knutz ◽  
Mads Huuse

<p>A drilling hazard assessment has been completed for a large area of the NW Greenland-Baffin Bay continental shelf. This assessment was in relation to International Ocean Discovery Program (IODP) proposal 909 that aims to drill several sites across the shelf in an attempt to better understand the evolution and variability of the northern Greenland Ice Sheet. The assessment utilised high quality and extensive 3D seismic data that were acquired during recent hydrocarbon exploration interest in the area – a fact that highlights the risk of drilling in a petroleum province and therefore, the importance of this assessment with regards to safety.</p><p>Scattered seismic anomalies are observed within the Cenozoic sedimentary succession covering the rift basins of the Melville Bay region. These features, potentially representing the presence of free gas or gas-rich fluids, vary in nature from isolated anomalies, fault flags, stacked fluid flow features and canyons; all of which pose a significant drilling risk and were actively avoided during site selection. In areas above the Melville Bay Ridge – a feature that dominates the structure of this area – free gas is also observed trapped beneath extensive gas hydrate deposits, identified via a spectacularly imaged bottom simulating reflector marking the base of the gas hydrate stability zone. The location of the hydrate deposits, and the free gas beneath, are likely controlled by a complicated migration history, due to large scale rift-related faulting and migration along sandy aquifer horizons. In other areas, gas is interpreted to have reached the shallow subsurface due to secondary leakage from a deeper gas reservoir on the ridge crest.</p><p>It is clear that hydrocarbon related hazards within this area are varied and abundant, making it a more challenging location to select sites for an IODP drilling campaign. However, due to the extensive coverage and high resolution (up to 11 m vertical resolution (45 Hz at 2.0 km/s velocity) of the 3D seismic data available, as well as the use of recently acquired ultra-high resolution site survey lines, these features can be accurately imaged and confidently mapped. This allowed for the development of a detailed understanding of the character and distribution of fluids within the shallow subsurface, and the use of this knowledge to select site localities that maximise the potential for drilling to be completed safely and successfully if proposal 909 were to be executed.</p>


2016 ◽  
Vol 4 (1) ◽  
pp. SA39-SA54 ◽  
Author(s):  
Sunny Singhroha ◽  
Stefan Bünz ◽  
Andreia Plaza-Faverola ◽  
Shyam Chand

We have estimated the seismic attenuation in gas hydrate and free-gas-bearing sediments from high-resolution P-cable 3D seismic data from the Vestnesa Ridge on the Arctic continental margin of Svalbard. P-cable data have a broad bandwidth (20–300 Hz), which is extremely advantageous in estimating seismic attenuation in a medium. The seismic quality factor (Q), the inverse of seismic attenuation, is estimated from the seismic data set using the centroid frequency shift and spectral ratio (SR) methods. The centroid frequency shift method establishes a relationship between the change in the centroid frequency of an amplitude spectrum and the Q value of a medium. The SR method estimates the Q value of a medium by studying the differential decay of different frequencies. The broad bandwidth and short offset characteristics of the P-cable data set are useful to continuously map the Q for different layers throughout the 3D seismic volume. The centroid frequency shift method is found to be relatively more stable than the SR method. Q values estimated using these two methods are in concordance with each other. The Q data document attenuation anomalies in the layers in the gas hydrate stability zone above the bottom-simulating reflection (BSR) and in the free gas zone below. Changes in the attenuation anomalies correlate with small-scale fault systems in the Vestnesa Ridge suggesting a strong structural control on the distribution of free gas and gas hydrates in the region. We argued that high and spatially limited Q anomalies in the layer above the BSR indicate the presence of gas hydrates in marine sediments in this setting. Hence, our workflow to analyze Q using high-resolution P-cable 3D seismic data with a large bandwidth could be a potential technique to detect and directly map the distribution of gas hydrates in marine sediments.


2020 ◽  
Author(s):  
Adnan Djeffal ◽  
Ingo Pecher ◽  
Satish Singh ◽  
Jari Kaipio

<p>Large quantities of fluids are predicted to be expelled from compacting sediments on subduction margins. Fluid expulsion is thought to be focussed, but its exact locations are usually constrained on very small scales and rarely can be resolved using velocity images obtained from traditional velocity analysis and ray-based tomography because of their resolution and accuracy limitation. However, with recent advancement in computing power, the full waveform inversion (FWI) is a powerful alternative to those traditional approaches as it uses phase and amplitude information contained in seismic data to yield a high-resolution velocity model of the subsurface.</p><p>Here, we applied elastic FWI along an 85 Km long 2D multichannel seismic profile on the southern Hikurangi margin, New Zealand. Our processing sequence includes: (1) downward continuation, (2) 2D traveltime tomography, and (3) full waveform inversion of wide-angle seismic data. We will present the final high-resolution velocity model and our interpretation of the fluid flow regimes associated with both the deforming overriding plate and the subducting plate.</p>


Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Francesco Turco ◽  
Leonardo Azevedo ◽  
Dario Grana ◽  
Gareth J. Crutchley ◽  
Andrew R. Gorman

Quantitative characterization of gas hydrate systems on continental margins from seismic data is challenging, especially in regions where no well logs are available. However, probabilistical seismic inversion provides an effective means for constraining the physical properties of subsurface strata in such settings and analyzing the variability related to the results. We apply a workflow for the characterization of two deep-water gas hydrate reservoirs east of New Zealand, where high concentrations of gas hydrate have been inferred previously. We estimate porosity and gas hydrate saturation in the reservoirs from multi-channel seismic data through a two-step procedure based on geostatistical seismic and Bayesian petrophysical inversion built on a rock physics model for gas hydrate-bearing marine sediments. We found that the two reservoirs together host between 2.45 × 105 m3 and 1.72 × 106 m3 of gas hydrate, with the best estimate at 9.68 × 105 m3. This estimate provides a first-order assessment for further gas hydrate evaluations in the region. The two-step statistically based seismic inversion method is an effective approach for characterizing gas hydrate systems from long-offset seismic reflection data.


Sign in / Sign up

Export Citation Format

Share Document