scholarly journals Studies on Metatherian Sex Chromosomes. IX. Sex Chromosomes of the Greater Glider (Marsupialia : Petauridae)

1979 ◽  
Vol 32 (3) ◽  
pp. 375 ◽  
Author(s):  
JD Murray ◽  
GM McKay ◽  
GB Sharman

The greater glider, currently but incorrectly known as Schoinobates vo/ans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY m,ales as in all other populations, and one with XY1Y2 males. Y or Yb but not Y 2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary sperrnatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes. [Other keywords: C-banding, eytotaxonomy, multiple sex chromosomes, XY bivalent.]

1970 ◽  
Vol 12 (4) ◽  
pp. 947-951 ◽  
Author(s):  
G. N. Lanier ◽  
A. G. Raskf

Fission-fusion polymorphism of the X chromosome and multiple sex chromosome configurations were observed in the Monochamus scutellatus-oregonensis complex. Segregation of fission X chromosomes opposite the Y is ensured by nucleolar orientation. However, occasional XY gametes may result when one X becomes disjoined from the nucleolus before the first meiotic division.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Guijun Guan ◽  
Meisheng Yi ◽  
Tohru Kobayashi ◽  
Yunhan Hong ◽  
Yoshitaka Nagahama

Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 787-790
Author(s):  
P R da Cunha ◽  
B Granadino ◽  
A L Perondini ◽  
L Sánchez

Abstract Dosage compensation refers to the process whereby females and males with different doses of sex chromosomes have similar amounts of products from sex chromosome-linked genes. We analyzed the process of dosage compensation in Sciara ocellaris, Diptera of the suborder Nematocera. By autoradiography and measurements of X-linked rRNA in females (XX) and males (XO), we found that the rate of transcription of the single X chromosome in males is similar to that of the two X chromosomes in females. This, together with the bloated appearance of the X chromosome in males, support the idea that in sciarids dosage compensation is accomplished by hypertranscription of the X chromosome in males.


1977 ◽  
Vol 30 (2) ◽  
pp. 103 ◽  
Author(s):  
Jennifer A Donald ◽  
DW Cooper

The paternal X inactivation system of kangaroos has been investigated in this study by using tritiated uridine-induced chromosome aberrations to distinguish the active from the inactive X. Previous work in eutherian mammals has demonstrated that constitutive heterochromatic chromosome regions are less susceptible to breakage by tritiated uri dine than euchromatic regions. The results of a comparison between the paternal X chromosome of a wallaroo x red kangaroo hybrid female and the two X chromosomes of a red kangaroo female suggested that the facultative heterochromatin of the X is also less susceptible to breakage by this treatment. However there were significantly more breaks of the paternal X in fibroblasts than in lymphocytes of the hybrid female, which agrees with biochemical findings suggesting activation of the paternal X in fibroblasts. Our results strengthen the suggestion of other workers that the reduced number of aberrations in heterochromatin occurs because such breaks occur principally when the DNA and labelled RNA are in apposition during transcription. Some evidence was found of an apparent toxicity effect of the tritiated uridine solution on the cells.


2021 ◽  
Author(s):  
Monica M Sheffer ◽  
Mathilde M Cordellier ◽  
Martin Forman ◽  
Malte Grewoldt ◽  
Katharina Hoffmann ◽  
...  

Differences between sexes in growth, ecology and behavior strongly shape species biology. In some animal groups, such as spiders, it is difficult or impossible to identify the sex of juveniles. This information would be useful for field surveys, behavioral experiments, and ecological studies on e.g. sex ratios and dispersal. In species with sex chromosomes, sex can be determined based on the specific sex chromosome complement. Additionally, information on the sequence of sex chromosomes provides the basis for studying sex chromosome evolution. We combined cytogenetic and genomic data to identify the sex chromosomes in the sexually dimorphic spider Argiope bruennichi, and designed RT-qPCR sex markers. We found that genome size and GC content of this spider falls into the range reported for the majority of araneids. The male karyotype is formed by 24 acrocentric chromosomes with an X1X20 sex chromosome system, with little similarity between X chromosomes, suggesting origin of these chromosomes by X chromosome fission or early duplication of an X chromosome and subsequent independent differentiation of the copies. Our data suggest similarly sized X chromosomes in A. bruennichi. They are smaller chromosomes of the complement. Our findings open the door to new directions in spider evolutionary and ecological research.


1957 ◽  
Vol 35 (3) ◽  
pp. 453-458 ◽  
Author(s):  
J. G. Robertson

A comparative study of somatic metaphase complements of the carrot rust fly, Chamaepsila rosae (F.), from England, Prince Edward Island, Ontario, and British Columbia showed that the chromosome number is eight and that all chromosomes are metacentric. The means of the total complement length ranged from 50.8 to 53.5 and the lengths for chromosomal pairs I–IV averaged 36.5, 24.8, 22.3, and 16.5% of the total length respectively for the four regions. The sex chromosomes are the largest elements in the complement, the X chromosome being 36.5% of the total length and the Y 28.8%. The arm ratios for members X, Y, II, III, and IV are 1.34, 1.13, 1.57, 1.21, and 1.34 respectively. Secondary constrictions were both infrequent and irregular in location. The work emphasizes that much caution is necessary in analyzing metaphase chromosomes for taxonomic purposes.


Author(s):  
John C. Lucchesi

Clusters of genes that encode similar products, such as the β‎-globin, the ribosomal RNA (rRNA) and the histone genes, are regulated in a coordinated fashion. An extreme case of coordinate regulation—dosage compensation—involves the genes present on the sex chromosomes. In Drosophila males, a complex (MSL) associates with the X chromosome where it enhances the activity of most X-linked genes. In Caenorhabditis, a complex (DCC) decreases the level of transcription of both X chromosomes in the XX hermaphrodite. In mammals, dosage compensation is achieved by the inactivation, early during development, of most X-linked genes on one of the two X chromosomes in females. In the mammalian embryo, X inactivation of either X chromosome is random and clonally inherited. The mechanism involves the synthesis of an RNA (Tsix) that protects one of the two Xs from inactivation, and of another RNA (Xist) that coats the other X chromosome and recruits histone- and DNA-modifying enzymes.


2016 ◽  
Vol 149 (4) ◽  
pp. 282-289 ◽  
Author(s):  
Michail Rovatsos ◽  
Martina Johnson Pokorná ◽  
Marie Altmanová ◽  
Lukáš Kratochvíl

Geckos in general show extensive variability in sex determining systems, but only male heterogamety has been demonstrated in the members of their legless family Pygopodidae. In the pioneering study published more than 45 years ago, multiple sex chromosomes of the type X1X1X2X2/X1X2Y were described in Burton's legless lizard (Lialisburtonis) based on conventional cytogenetic techniques. We conducted cytogenetic analyses including comparative genomic hybridization and fluorescence in situ hybridization (FISH) with selected cytogenetic markers in this species and the previously cytogenetically unstudied Papua snake lizard (Lialis jicari) to better understand the nature of these sex chromosomes and their differentiation. Both species possess male heterogamety with an X1X1X2X2/X1X2Y sex chromosome system; however, the Y and one of the X chromosomes are not small chromosomes as previously reported in L. burtonis, but the largest macrochromosomal pair in the karyotype. The Y chromosomes in both species have large heterochromatic blocks with extensive accumulations of GATA and AC microsatellite motifs. FISH with telomeric probe revealed an exclusively terminal position of telomeric sequences in L. jicari (2n = 42 chromosomes in females), but extensive interstitial signals, potentially remnants of chromosomal fusions, in L.burtonis (2n = 34 in females). Our study shows that even largely differentiated and heteromorphic sex chromosomes might be misidentified by conventional cytogenetic analyses and that the application of more sensitive cytogenetic techniques for the identification of sex chromosomes is beneficial even in the classical examples of multiple sex chromosomes.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1317-1328 ◽  
Author(s):  
Bryant F McAllister

Abstract Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.


Sign in / Sign up

Export Citation Format

Share Document