scholarly journals Ecotypic differentiation of mid-Atlantic Quercus species in response to ultramafic soils

2015 ◽  
Vol 63 (4) ◽  
pp. 308 ◽  
Author(s):  
Jerry Burgess ◽  
Katalin Szlavecz ◽  
Nishanta Rajakaruna ◽  
Christopher Swan

Spatial heterogeneity of soil conditions combined with intraspecific variation confer site-specific edaphic tolerance, resulting in local adaptation and speciation. To understand the geoecological processes controlling community assembly of woodland tree species on serpentine and mafic soils, we investigated resource gradients and provenance (geographic area of propagule collection) as variables affecting typical representative upland oak (Quercus) species distribution. Accordingly, we conducted a year-long reciprocal transplant experiment in the greenhouse with serpentine and mafic soils, using seedlings of five oak species (Quercus marilandica, Q. stellata, Q. montana, Q. michauxii and Q. alba). All seedlings, regardless of provenance or soil depth, displayed more robust growth in the mafic soils. Soil depth was an important determinant, with all species exhibiting increased growth in the deeper-soil treatments. Fitness surrogates such as stem height, relative growth rate, and leaves per plant were greater when seedlings were grown in their home soil than when they were grown in the non-resident soil, suggesting an ecotypic effect. Mean stomatal conductance and stem growth were positively correlated with soil depth in all treatments. Taken together, the study showed provenance-specific growth responses of oak seedlings to soil type and depth, providing a better understanding of the mechanisms controlling species assembly in woodland communities.

Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Kelly L. Bennett ◽  
William Owen McMillan ◽  
Jose R. Loaiza

Ae. (Stegomyia) aegypti L. and Aedes (Stegomyia) albopictus Skuse mosquitoes are major arboviral disease vectors in human populations. Interspecific competition between these species shapes their distribution and hence the incidence of disease. While Ae. albopictus is considered a superior competitor for ecological resources and displaces its contender Ae. aegypti from most environments, the latter is able to persist with Ae. albopictus under particular environmental conditions, suggesting species occurrence cannot be explained by resource competition alone. The environment is an important determinant of species displacement or coexistence, although the factors underpinning its role remain little understood. In addition, it has been found that Ae. aegypti can be adapted to the environment across a local scale. Based on data from the Neotropical country of Panama, we present the hypothesis that local adaptation to the environment is critical in determining the persistence of Ae. aegypti in the face of its direct competitor Ae. albopictus. We show that although Ae. albopictus has displaced Ae. aegypti in some areas of Panama, both species coexist across many areas, including regions where Ae. aegypti appear to be locally adapted to dry climate conditions and less vegetated environments. Based on these findings, we describe a reciprocal transplant experiment to test our hypothesis, with findings expected to provide fundamental insights into the role of environmental variation in shaping the landscape of emerging arboviral disease.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3218
Author(s):  
Simon Damien Carrière ◽  
Nicolas K. Martin-StPaul ◽  
Claude Doussan ◽  
François Courbet ◽  
Hendrik Davi ◽  
...  

The spatial forest structure that drives the functioning of these ecosystems and their response to global change is closely linked to edaphic conditions. However, the latter properties are particularly difficult to characterize in forest areas developed on karst, where soil is highly rocky and heterogeneous. In this work, we investigated whether geophysics, and more specifically electromagnetic induction (EMI), can provide a better understanding of forest structure. We use EMI (EM31, Geonics Limited, Ontario, Canada) to study the spatial variability of ground properties in two different Mediterranean forests. A naturally post-fire regenerated forest composed of Aleppo pines and Holm oaks and a monospecific plantation of Altlas cedar. To better interpret EMI results, we used electrical resistivity tomography (ERT), soil depth surveys, and field observations. Vegetation was also characterized using hemispherical photographs that allowed to calculate plant area index (PAI). Our results show that the variability of ground properties contribute to explaining the variability in the vegetation cover development (plant area index). Vegetation density is higher in areas where the soil is deeper. We showed a significant correlation between edaphic conditions and tree development in the naturally regenerated forest, but this relationship is clearly weaker in the cedar plantation. We hypothesized that regular planting after subsoiling, as well as sylvicultural practices (thinning and pruning) influenced the expected relationship between vegetation structure and soil conditions measured by EMI. This work opens up new research avenues to better understand the interplay between soil and subsoil variability and forest response to climate change.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 262 ◽  
Author(s):  
Leszek Karliński ◽  
Sabine Ravnskov ◽  
Maria Rudawska

Poplars, known for their diversity, are trees that can develop symbiotic relationships with several groups of microorganisms. The genetic diversity of poplars and different abiotic factors influence the properties of the soil and may shape microbial communities. Our study aimed to analyse the impact of poplar genotype on the biomass and community composition of the microbiome of four poplar genotypes grown under different soil conditions and soil depths. Of the three study sites, established in the mid-1990s, one was near a copper smelter, whereas the two others were situated in unpolluted regions, but were differentiated according to the physicochemical traits of the soil. The whole-cell fatty acid analysis was used to determine the biomass and proportions of gram-positive, gram-negative and actinobacteria, arbuscular fungi (AMF), other soil fungi, and protozoa in the whole microbial community in the soil. The results showed that the biomass of microorganisms and their contributions to the community of organisms in the soil close to poplar roots were determined by both factors: the tree-host genotype and the soil environment. However, each group of microorganisms was influenced by these factors to a different degree. In general, the site effect played the main role in shaping the microbial biomass (excluding actinobacteria), whereas tree genotype determined the proportions of the fungal and bacterial groups in the microbial communities and the proportion of AMF in the fungal community. Bacterial biomass was influenced more by site factors, whereas fungal biomass more by tree genotype. With increasing soil depth, a decrease in the biomass of all microorganisms was observed; however, the proportions of the different microorganisms within the soil profile were the result of interactions between the host genotype and soil conditions. Despite the predominant impact of soil conditions, our results showed the important role of poplar genotype in shaping microorganism communities in the soil.


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 335
Author(s):  
Stan J. Rance ◽  
David M. Cameron ◽  
Carl R. Gosper ◽  
Emlyn R. Williams

Agriculture and forestry in savanna soils worldwide are often constrained by multiple soil limitations. We measured the effect of fertilisation on growth of Pinus caribaea var. hondurensis in order to improve savanna soil productivity in the Northern Territory, Australia. Growth responses to nitrogen, potassium, sulfur and a combined trace element treatment (abbreviated to N × K × S × T) with basal phosphorus (P) application on three soils, and N × P × K × S × T on another three soils, were examined in glasshouse factorial experiments. Without P, there was little response to N, S or T. Growth was usually greatest on N + P + S treatments. The P applications increased soil pH and growth, while N and S applications decreased pH. Growth was consistently poor at soil pH < ~5.2; a pH where exchangeable cations can be leached from the soil and aluminium can become more mobile. Responses to P, N, S and K, and likely also to zinc, were consistent with savanna soils with a long history of nutrient losses due to fire and weathering. Establishing productive plantations or agriculture will require detailed knowledge of soil properties, careful attention to soil pH and balanced fertiliser applications so as not to produce perverse outcomes. Long-term protection from fires could improve soil conditions, to be balanced against the risks of crop loss through unplanned fire.


Botany ◽  
2010 ◽  
Vol 88 (10) ◽  
pp. 930-936 ◽  
Author(s):  
Laura L. Beaton ◽  
Susan A. Dudley

Previous studies have demonstrated that plants collected as seeds from roadside populations of Dipsacus fullonum L. subsp sylvestris (Huds.) Claphamare more tolerant of high salinity, low osmotic potentials, and hypoxia during juvenile growth stages than those from oldfield populations. However, it is unclear how tolerance to these abiotic stressors translates into performance in the roadside environment. Here, we conducted a reciprocal transplant experiment between oldfield and roadside environments. Seeds from three roadside and three oldfield populations were planted into oldfield and roadside sites in late fall. Throughout the spring and summer, the survivorship and size of the seedlings were monitored to examine differences in performance in the two habitats. We also assessed the relation between performance in the field and previous in vitro measures of salt and drought tolerance of each population. A drought caused high mortality levels in the oldfield and roadside. Individuals from roadside populations did not exhibit increased growth or survivorship in the roadside environment. In the early months of seedling growth, neither salt nor drought tolerance were significantly correlated with performance in the roadside during seedling establishment. Rather, during these early months, the average size of individuals in each population in the field was positively correlated with the population’s average seed mass, indicating that maternal provisioning had a greater impact than tolerance to particular environmental stresses during the juvenile stages of development. However, later in the summer, after the drought began, the average size of individuals from each population in the field was positively correlated with that population’s average drought tolerance.


1989 ◽  
Vol 67 (12) ◽  
pp. 3618-3624 ◽  
Author(s):  
Susan R. Smythe ◽  
Ian Hutchinson

Four populations of Carex lyngbyei from each of three estuaries with contrasting salinity regimes in northwestern North America (deltas of the Nanaimo, Skagit, and Squamish rivers) were grown in a reciprocal transplant experiment to determine the degree to which morphological differences were genetic or environmentally based. Shoot height, biomass per shoot, and aboveground biomass differences were generally not maintained in the transplant environment, suggesting that genetic control on morphological variation was weak. Transplant site salinity regimes had little effect on shoot density or survival. It is suggested that broadly adapted genotypes, capable of this sort of plastic response, may have a competitive advantage in these fluctuating estuarine environments. Key words: Carex lyngbyei, Pacific Northwest, plasticity, reciprocal transplants.


2013 ◽  
Vol 35 (3) ◽  
pp. 220-227 ◽  
Author(s):  
Zhaojun Bu ◽  
Xu Chen ◽  
Håkan Rydin ◽  
Shengzhong Wang ◽  
Jinze Ma ◽  
...  

2014 ◽  
Vol 94 (7) ◽  
pp. 1269-1279 ◽  
Author(s):  
A. Mosseler ◽  
J. E. Major

Mosseler, A. and Major, J. E. 2014. Coppice growth responses of two North American willows in acidic clay soils on coal mine overburden. Can. J. Plant Sci. 94: 1269–1279. Acid-generating mine spoils with low pH are a major problem for revegetation and site reclamation. We compared growth responses of 15 genotypes from two widespread willow species, Salix discolor Muhl. (DIS) and S. eriocephala Michx. (ERI), native to eastern and central North America on two adjacent coal mine spoil sites that differed strongly in both pH (3.6 vs. 6.8) and soil texture. Despite significantly poorer growth responses for several coppice biomass traits on a highly acidic clay deposit compared with adjacent shale overburden, these willow clones demonstrated a surprising tolerance for extremely acidic soil conditions. Analysis of survival and growth uncovered genotype×environment interactions, indicating that both species and genotypic differences within species could be used to select better-adapted genotypes for extreme conditions. Most ERI and DIS clones grew comparatively better on the shale overburden site, but two of eight ERI clones and one of seven DIS clones grew significantly better on the acidic clay site, indicating the possibility for clonal selection for specific site adaptations within a species. Allometric relationships between coppice height and basal stem diameter were constant at both the species and site levels. However, there was a divergence of height and diameter in their relationship with green mass yields on the two different site types.


Sign in / Sign up

Export Citation Format

Share Document