Structural Studies of Complexes of Tridentate Terimine Systems. Crystal Structure of Bis(2,2′:6′,2′′-terpyridine)ruthenium(II) Perchlorate Hydrate, Bis(2,2′:6′,2′′-terpyridine)- osmium(II) Perchlorate Hemihydrate and Bis((1,10-phenanthrolin-2-yl)(pyridin-2-yl)amine)iron(II) Tetrafluoroborate Dihydrate

1998 ◽  
Vol 51 (12) ◽  
pp. 1131 ◽  
Author(s):  
Donald C. Craig ◽  
Marcia L. Scudder ◽  
Wendy-Anne McHale ◽  
Harold A. Goodwin

The crystal structures of bis(2,2′:6′,2″-terpyridine)ruthenium(II) perchlorate hydrate, bis(2,2′:6′,2″- terpyridine)osmium(II) perchlorate hemihydrate and bis((1,10-phenanthrolin-2-yl)(pyridin-2-yl)- amine)iron(II) tetrafluoroborate dihydrate are described. In the terpyridine complexes the ruthenium-nitrogen distances and the corresponding osmium-nitrogen distances are not significantly different. In both complexes the ligand geometry and the metal ion environment show the distortions usual for bis(terpyridine) systems. Distortions are less marked in the bis((1,10-phenanthrolin-2-yl)(pyridin-2-yl)amine)iron(II) cation in which each tridentate unit forms one five-membered and one six-membered chelate ring. [Ru(trpy)2] [ClO4]2.(H2O)1.1: tetragonal, space group I 41/a, a, b 12·527(2), c 40·202(11) Å, Z 8. [Os(trpy)2] [ClO4]2.(H2O)0·5: monoclinic, space group P 21/n, a 8·842(3), b 8·861(1), c 39·22(2) Å, β93·89(2)°, Z 4. [Fe(phpyam)2] [BF4]2.(H2O)2: triclinic, space group P -1, a 12·43(1), b 12·45(1), c 13·35(1) Å, α 62·70(10), β 78·55(8), γ 72·46(9)°, Z 2.

1996 ◽  
Vol 49 (12) ◽  
pp. 1301 ◽  
Author(s):  
GW Allen ◽  
ECH Ling ◽  
LV Krippner ◽  
TW Hambley

The preparation and purification of [Pt( hpip )Cl2] and [Pd( hpip )Cl2] ( hpip = homopiperazine = 1,4-diazacycloheptane) are described. Crystal structures of [Pt( hpip )Cl2] and [Pd( hpip )Cl2] have been determined by X-ray diffraction methods and refined to R values of 0.023 (932 F) and 0.023 (948 F). The crystals of [Pt( hpip )Cl2] are orthorhombic, space group Pbcm , a 7.7019(8), b 9.8080(12), c 12.1944(14) Ǻ, and those of [Pd( hpip )Cl2] are monoclinic, space group P21/m, a 6.1001(9), b 11.527(2), c 6.458(I) Ǻ, β 106.30(2)°. The seven- membered rings of the ligands in both complexes adopt boat-like conformations in which the five- membered chelate ring has an eclipsed N-C-C-N group and the six- membered chelate ring adopts a chair conformation. Molecular mechanics methods were used to investigate whether this conformation was a crystallographic artefact but it was found to be real. An alternative conformation in which the six-membered chelate ring adopts a skew-boat conformation was also investigated. It was found to be less stable than the conformation observed in the crystal structures, but to a degree that depends on whether non-bonded interactions involving the metal atom were included or not.


1988 ◽  
Vol 43 (8) ◽  
pp. 1029-1032 ◽  
Author(s):  
Johannes Beck

Abstract(Cp)Mo(CO)2(tolN5tol) is formed in the reaction of (Cp)Mo(CO)3Cl with tolNN(NH)NNtol and NaOH in ethanol. It forms red platelike crystals from THF/hexane which crystallize in the monoclinic space group P21/n with the lattice parameters a = 765.6(2), b = 2372.3(3), c = 1149.4(2) pm, β = 97.06(2)°, Z = 4. The structure consists of monomeric complexes. The pentaazadienido ligand chelates with its nitrogen atoms N1 and N3 the Mo atom of a (Cp)Mo(CO)2 unit. The nitrogen atom N5 is not coordinated to the metal atom. Although asymmetrically bonded, the all trans N5 zig zag chain is planar. The N -N distances in the four membered chelate ring are nearly equal (N1 - N2 = 131.0 and N2 - N3 = 132.6 pm)


2002 ◽  
Vol 55 (8) ◽  
pp. 535 ◽  
Author(s):  
A. M. Funston ◽  
W. D. McFadyen ◽  
P. A. Tregloan

The new cobalt(III) complex [Co(cyclam)(NO3)2]NO3�HNO3 (2) has been synthesized. The crystal structure of this complex and the related complex [Co(cyclam)(NH3)2]Cl2BF4�2H2O (1) have been determined. Crystal data for (1): M 451.04, monoclinic, space group P21/c (No. 14), a 7.3927(10), b 13.3082(7), c 19.524(2) Å, β 97.625(14)�, V 1903.9(3) Å3, F(000) 936, Z 4, Dc 1.574 g cm–3, μ 1.225 cm–1, Mo Kα (graphite monochromatized) λ 0.71073 Å, T 293(1) K. Crystal data for (2): M 571.33, triclinic, space group P1–(No. 2),a 7.3988(14), b 8.5682(16), c�9.209(3) Å, α 89.02(2), β 76.64(3), γ 82.340(16)�, V 562.9(2) Å3, F(000) 296, Z 1, Dc 1.685 g cm–3, μ 0.854 cm–1, Mo Kα (graphite monochromatized) λ 0.71073 Å, T 293(1) K. In both complexes the complex crystallizes in the trans-III form with the cobalt in the usual octahedral environment.


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


1998 ◽  
Vol 53 (7) ◽  
pp. 641-652 ◽  
Author(s):  
Arista Gräfe-Kavoosian ◽  
Shida Nafepour ◽  
Klaus Nagel ◽  
Karl-Friedrich Tebbe

Abstract The new compound [(Crypt-2.2.2)H2]I8 has been prepared by the reaction of [(Crypt-2.2.2)H2](I3)2 with iodine in methanol. It crystallizes in the orthorhombic space group Pbcn with a = 11.476 (2), b = 13.589 (2), c = 22.888 (2) Å and Z = 4. The crystal structure has been refined to RF = 0.031 for 1618 reflections. It may be described as a layerlike packing of octaiodide anions I82-and diprotonated 2.2.2-Crypt as cations. The non planar octaiodide anion is built up from two triiodide groups and a bridging iodine molecule.Tris(1, 10-phenanthroline)nickel(II) octaiodide bis(chloroform) crystallizes in the monoclinic space group P21/n with a = 11.683 (8), b = 21.717 (8), c = 20.752 (5) Å, β = 95.03 (5)° and Z = 4 formula units. The crystal structure has been refined to RF = 0.058 for 3894 reflections. The structure consists of two chloroform molecules, octahedrally coordinated complex cations [Ni(phen)3]2+ and nonplanar octaiodide anions I82- each composed of two asymmetric triiodide units I3- weakly associated with an elongated bridging iodine molecule I2.The already known structure of bis(N-methylurotropinium) octaiodide, (UrMe)2I8, has been verified and more accurate crystal data have been collected. The crystal structure has been refined to RF = 0.045 for 1908 reflections. The compound crystallizes in the monoclinic space group P21/c with a = 11.302 (2), b = 9.850 (2), c = 14.188 (2) Å , β = 92.59 (1)° and Z = 2. The anion has the shape of a stretched Z.The structure of bis(N-ethylurotropinium) octaiodide (UrEt)2I8 has been determined and a new configuration (I3-, I5-) for octaiodide ions between Z (I3- · I2 ·I3-) and a “broken” configuration (I3-, I5-) has been observed. The compound crystallizes in the triclinic space group P1̄ with a = 9.741 (3), b = 11.815 (3), c = 15.426 (3) Å, α = 91.80 (2), β = 107.14 (2), γ = 90.04 (2)° and Z = 2. The crystal structure has been refined to RF = 0.037 for 3657 reflections.


1995 ◽  
Vol 48 (12) ◽  
pp. 1933 ◽  
Author(s):  
CT Abrahams ◽  
GB Deacon ◽  
CM Forsyth ◽  
WC Patalinghug ◽  
BW Skelton ◽  
...  

With the facile displacement being utilized of thf from Yb(pin)2(thf)4 (pin = 2-phenylindol-1-yl, thf = tetrahydrofuran) in toluene solution, the complexes Yb(pin)2(dme)2 (dme = 1,2- dimethoxyethane), Yb(pin)2 (tmen)(tmen = N,N,N′,N′-tetramethylethane-1,2-diamine) and Yb(pin)2(diglyme)(thf) (diglyme = bis(2-methoxyethyl) ether) have been prepared from the respective ligands and Yb(pin)2(thf)4. Yb(pin)2 (diglyme) (thf) [monoclinic, space group P 21 /c, a 15.35(1), b 16.179(5), c 14.45(2) Ǻ, β 107.51(8)°, Z 4, R 0.044 for 2956 (I > 3σ(I)) 'observed' reflections] has a monomeric six-coordinate structure with transoid nitrogen donor atoms, N-Yb-N 143.6(4)° and an irregular coordination polyhedron described as either a distorted trigonal prism or a monocapped square pyramid. Attempted crystallization of Yb(pin)2 (thf) by partial desolvation of Yb(pin)2(thf)4 in hot toluene, containing a trace of dme, gave a mixture of red Yb(pin)2(thf) and orange [Yb(pin)2(dme)]2. The latter was independently synthesized by partial desolvation of Yb(pin)2(dme)2 in toluene. An X-ray crystal structure showed [Yb(pin)2(dme)]2 [monoclinic, space group P 21/c, a 11 .614(2), b 15.945(7), c 15.327(4) Ǻ, β 110.19(2)°, Z 2 dimers, R 0.070 for 2314 (I ≥ 3σ(I)) 'observed' reflections] to be a dimer with two bridging pin ligands, coordinated through nitrogen only. There is an approximately square pyramidal five-coordinate ytterbium environment with an apical dme oxygen, and with two bridging nitrogens, a terminal nitrogen, and a dme oxygen in the basal plane.


2005 ◽  
Vol 60 (2) ◽  
pp. 164-168 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
G. Eren ◽  
F. Gümüş ◽  
I. Svoboda

2-(3’-Hydroxypropyl)benzimidazolium (Hhpb) hexa- and tetrachloroplatinate (C10H13N2O)2·[PtCl6] 1 and (C10H13N2O)2·[PtCl4] 2 were synthesized and their crystal structures determined. Compound 1 is monoclinic, space group P21/n, a = 8.800(1), b = 14.389(2), c = 10.264(2) Å, β = 98.540(10)°, V = 1285.3(3) Å3, Z = 2 and Dc = 1.959 g cm−3. Compound 2 is triclinic, space group P1̄, a=7.8480(10), b=9.0460(10), c=9.6980(10) Å ,α =65.420(10), β =68.810(10), γ = 76.770(1)°,V =581.26(4) Å3, Z =1 and Dc =1.969 g cm−3. In both compounds, the Pt atoms reside at a centre of inversion. Compounds 1 and 2 are comprised of 2-(3’-hydroxypropyl)benzimidazolium (Hhpb)+: (C10H12N2O)+ and [PtCl6]2− and [PtCl4]2− ions, respectively, linked by intermolecular hydrogen bonds N...Cl [range from 3.428(3) to 3.584(4) Å ], N···O [2.769(5) Å ] and O···Cl [3.338(4) and 3.321(3) Å ] for 1, and N···Cl [3.162(7) Å ], N···O [2.749(8) Å ] and O···Cl [3.289(6) Å ] for 2.


1992 ◽  
Vol 296 ◽  
Author(s):  
Kien-yin Lee ◽  
Richard Giloxdi

AbstractNTO is an explosive of current interest. It has been evaluated as an insensitive component to replace RDX in the bomb fill, and as a major ingredient for the auto air bag system. The crystal structure of the β from of NTO has been determined by single-crystal X-ray methods. The unit cell is monoclinic, space group P21/c, with a = 9.326, b = 5.515, c = 9.107 Å, β = 100.77°. There are four molecules in the cell, density 1.878 g/cm3. Infinite extension of H-bonding in two-dimensional sheets occurs in the monoclinic form. Bond lengths and angles all have normal values.Efforts have been made to determine the crystal structure of α-NTO. However, a structure refined only to R = 17% was obtained, probably due to some kind of twinning about the crystal needle axis. The unit cell is triclinic, space group P1, with a = 5.12, b = 10.30, c = 17.9 Å, α = 106.7°, β= 97.7°, γ = 90.2°. There are eight molecules in the cell, density 1.92 g/cm3. Ribbons of NTO molecules formed by a relatively strong network of hydrogen bonds are observed. It was found that α-NTO is the stable, dominating form. A variety of techniques have been chosen to identify the two polymorphs.


1992 ◽  
Vol 70 (3) ◽  
pp. 919-925 ◽  
Author(s):  
A. Wallace Cordes ◽  
Charles M. Chamchoumis ◽  
Robin G. Hicks ◽  
Richard T. Oakley ◽  
Kelly M. Young ◽  
...  

The preparation and solid state characterization of the bifunctional radical furan-2,5-bis(1,2,3,5-dithiadiazolyl) 2,5-[(S2N2C)OC4H2(CN2S2)] and the related monofunctional radical 2-cyanofuran-5-(1,2,3,5-dithiadiazolyl) 2,5-[(S2N2C)OC4H2(CN)] are described. The crystal structure of 2,5-[(S2N2C)OC4H2(CN2S2)] is orthorhombic, space group Pna21, and consists of interleaved arrays of dimers, for which the mean interannular [Formula: see text] contact is 3.137 Å. The crystal structure of the monofunctional radical 2,5-[(S2N2C)OC4H2(CN)] is monoclinic, space group P21/n, and consists of a ribbon-like network of dimers (mean interannular [Formula: see text] interconnected by close head-to-tail [Formula: see text] contacts. The dimer units form stacks parallel to z, with a mean interdimer [Formula: see text] separation of 3.956 Å. The similarities and differences between these two crystal structures and those of related benzene-substituted systems are discussed. Keywords: dithiadiazolyl radicals, furan-based diradicals, cyanofuran-based radicals, radical dimers, crystal structures.


Author(s):  
Sandeep Kumar ◽  
Ruchi Khajuria ◽  
Amanpreet Kaur Jassal ◽  
Geeta Hundal ◽  
Maninder S. Hundal ◽  
...  

Donor-stabilized addition complexes of nickel(II) with disubstituted diphenyldithiophosphates, [{(ArO)2PS2}2NiL2] {Ar = 2,4-(CH3)2C6H3[(1), (5)], 2,5-(CH3)2C6H3[(2), (6)], 3,4-(CH3)2C6H3[(3), (7)] and 3,5-(CH3)2C6H3[(4), (8)];L= C5H5N [(1)–(4)] and C7H9N [(5)–(8)]}, were successfully isolated and characterized by elemental analysis, magnetic moment, IR spectroscopy and single-crystal X-ray analysis. Compound (4) crystallizes in the monoclinic space groupP21/nwhereas compounds (7) and (8) crystallize in the triclinic space group P\bar 1. The single-crystal X-ray diffraction analysis of (4), (7) and (8) reveals a six-coordinated octahedral geometry for the NiS4N2chromophore. Two diphenyldithiophosphate ions act as bidentate ligands with their S atoms coordinated to the Ni centre. Each of them forms a four-membered chelate ring in the equatorial plane. The N atoms from two donor ligands are axially coordinated to the Ni atom.


Sign in / Sign up

Export Citation Format

Share Document