Heterogeneous Photocatalytic Discoloration/Degradation of Rhodamine B with H2O2 and Spinel Copper Ferrite Magnetic Nanoparticles

2014 ◽  
Vol 67 (4) ◽  
pp. 609 ◽  
Author(s):  
Ariadna Flores ◽  
Karina Nesprias ◽  
Paula Vitale ◽  
Julia Tasca ◽  
Araceli Lavat ◽  
...  

The discoloration/degradation of the artificial dye Rhodamine B (RhB) was investigated using advanced oxidation technologies. Aqueous solutions of RhB containing spinel copper ferrites (CuFe2O4) as a heterogeneous catalyst were exposed to UV irradiation/hydrogen peroxide. Under these experimental conditions the discoloration/degradation of RhB is strongly promoted by copper ferrites, reaching 95 % discoloration of the dye in 10 min and 97 % degradation in 200 min. The influence of the catalyst amount, H2O2 concentration, light source, and UV light intensity were studied. Optimum concentrations of H2O2 and catalyst dosage were found for the RhB degradation reaction. The catalyst had high magnetic sensitivity under an external magnetic field, which allowed its magnetic separation from water avoiding secondary pollution processes, and its recycling. A markedly synergetic effect of spinel copper ferrite and UV light irradiation was observed for the RhB discoloration/degradation with H2O2 as a green oxidant.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1276
Author(s):  
Qian Li ◽  
Xiaoyu Jiang ◽  
Yongfu Lian

The MnFe2O4/BGA (boron-doped graphene aerogel) composite was prepared by hydrothermal treatment of MnFe2O4 particles, boric acid, and graphene oxide. When applied as a photo-Fenton catalyst for the degradation of rhodamine B, the MnFe2O4/BGA composite yielded a degradation efficiency much higher than the sum of those of individual MnFe2O4 and BGA under identical experimental conditions, indicating a strong synergetic effect established between MnFe2O4 and BGA. The catalytic degradation of rhodamine B was proved to follow pseudo first-order kinetics, and the apparent reaction rate constant on the MnFe2O4/BGA composite was calculated to be three- and seven-fold that on BGA and MnFe2O4, respectively. Moreover, the MnFe2O4/BGA composite also demonstrated good reusability and could be reused for four cycles without obvious loss of photocatalytic activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


2014 ◽  
Vol 289 ◽  
pp. 224-229 ◽  
Author(s):  
Qizhao Wang ◽  
Juan Hui ◽  
Li Yang ◽  
Haohao Huang ◽  
Yuxia Cai ◽  
...  

Evergreen ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 280-284
Author(s):  
Nur Izzah Iwanina Zamri ◽  
Siti Lailatul Noramalina Zulmajdi ◽  
Eny Kusrini ◽  
Karina Ayuningtyas ◽  
Hartini M. Yasin ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1007
Author(s):  
Abdessalam Bouddouch ◽  
Elhassan Amaterz ◽  
Bahcine Bakiz ◽  
Aziz Taoufyq ◽  
Frédéric Guinneton ◽  
...  

Polycrystalline bismuth phosphate BiPO4 was synthesized by solid-state reaction at different temperatures varying from 500 to 900 °C. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and Raman spectroscopy. The low-temperature phase of BiPO4 has monoclinic structure with a space group P21/n, and was transformed into the monoclinic phase P21/m with a slight distortion of monoclinic lattice when it was heated above 500 °C. The effect of the transformation on the structure, morphology and photocatalytic properties was examined. The photocatalytic activity of each sample, in presence of Rhodamine B (RhB) in aqueous solution, was carried out and analyzed under UV light irradiation. Photoexperiments showed that the material prepared at 500 °C is the best catalyst with degradation efficiency of the order of 96% after 12 min of reaction time under UV light irradiation. This high photocatalytic efficiency could be due to their structural and morphological changes. The photocatalytic degradation mechanism of RhB in the presence of the best photocatalyst BiP-500 °C is proposed. The stability of the catalyst was also examined by carrying out four successive tests of the degradation in the presence of BiP-500 °C. Total organic carbon (TOC) was used to further estimate the rate of mineralization in the presence of BiP-500 °C (83% TOC removal). Photoluminescence experiments performed under UV-laser light irradiation revealed emissions in the green-orange range, with optimal intensities for the mix systems observed at 550 °C.


2017 ◽  
Vol 8 ◽  
pp. 604-613 ◽  
Author(s):  
Subia Ambreen ◽  
Mohammad Danish ◽  
Narendra D Pandey ◽  
Ashutosh Pandey

Ta2O5 nanoparticles have been synthesized from alkoxy carboxylates of tantalum via the sol–gel route. Tantalum alkoxides were reacted with chlorocarboxylic acids in order to lower the susceptibility hydrolysis. When these modified alkoxy carboxylates were used in the sol–gel synthesis, they yielded Ta2O5 nanoparticles of better properties than those of the alkoxide-derived Ta2O5 nanoparticles. These nanoparticles efficiently removed rhodamine B under UV light irradiation.


2020 ◽  
Vol 82 (4) ◽  
pp. 695-703
Author(s):  
Amel Ounnar ◽  
Abdelkrim Bouzaza ◽  
Lidia Favier ◽  
Fatiha Bentahar

Abstract The current work investigates the removal of two hazardous macrolide molecules, spiramycin and tylosin, by photodegradation under external UV-light irradiation conditions in a slurry photoreactor using titanium dioxide as a catalyst. The kinetics of degradation and effects of main process parameters such as catalyst dosage, initial macrolide concentration, light intensity and stirring rate on the degradation rate of pollutants have been examined in detail in order to obtain the optimum operational conditions. It was found that the process followed a pseudo first-order kinetics according to the Langmuir–Hinshelwood model. The optimum conditions for the degradation of spiramycin and tylosin were low compound concentration, 1 g L−1 of catalyst dosage, 100 W m−2 light intensity and 560 rpm stirring rate. Then, a maximum removal (more than 90%) was obtained after 300 min of irradiation time. Furthermore, results show that the selection of optimized operational parameters leads to satisfactory total organic carbon removal rate (up to 51%) and biochemical oxygen demand to chemical oxygen demand ratio (∼1) confirming the good potential of this technique to remove complex macrolides from aqueous solutions.


Author(s):  
Ludovic I. Dorkis ◽  
Juan David Cohen ◽  
Jorge I. Tobón

Self-cleaning activity of Portland cement pastes blended with nanoparticles of titanium oxynitride (TiO2−xNy) was studied. Samples with various amounts of TiO2−xNy (1% and 3%) were evaluated under irradiation of UV and visible light, and with two curing ages (65 hour and 28 days). Rhodamine B was the pigment used and its loss of color on the cement pastes was carried out using a Spectrometer UV/Vis measuring the coordinates CIE (Commission Internationale de l’Eclairage) L∗, a∗, b∗. Discoloration of Rhodamine B on the surface of the samples was established as the photocatalytic efficiency coefficient (ε). In addition, samples with TiO2 nanoparticles (1% and 3%) were studied under the same conditions and their performances were compared with TiO2-xNy. The presence of nitrogen in the tetragonal structure of TiO2 was evidenced by X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectrophotometry and Carbon, Hydrogen and Nitrogen (CHN) analysis. The band gap for TiO2 and TiO2-xNy was determined by the transformed Kubelka-Munk function ( [F (R∞) hv]1/2). The results have shown a similar behavior for both additions under UV light irradiation, with 3% being the addition with the highest photocatalytic efficiency obtained in the early ages of curing time.  TiO2−xNy showed activity under irradiation with visible light, unlike TiO2, which could only be activated under UV light.  At the late curing ages, the samples with 3% of TiO2-xNy showed the highest efficiency under irradiation of UV and visible light.


2015 ◽  
Vol 39 (6) ◽  
pp. 4437-4444 ◽  
Author(s):  
Fengqin Wang ◽  
Caifu Dong ◽  
Chengmiao Wang ◽  
Zongchao Yu ◽  
Shukun Guo ◽  
...  

Two MOFs were employed as fluorescence materials for selectively sensing aromatic amines as well as the photodegradation of organic dyes.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744098
Author(s):  
Yu Zhao ◽  
Wen-Han Du ◽  
Lei Chen ◽  
Jin Xiao ◽  
Chao Xiong ◽  
...  

Graphene and titanium dioxide (TiO2) composite catalyst has been synthesized by hydrothermal synthesis method, and used for the degradation of Rhodamine B (Rh.B) in water. The photoelectrocatalytic activity of this composite was evaluated by decomposing of Rh.B in water under visible or UV light irradiation. The degradation results indicated that the photoelectrocatalytic performance of this composite catalyst was greatly enhanced due to the improved adsorption performance and separation efficiency of photo-generated carriers possibly. The composite with graphene content of 10 wt.% exhibited superior activity under UV light irradiation. After 30 min of reaction, the photoelectrocatalytic degradation ratio of Rh.B was about 96% when pH [Formula: see text] 6–7. The results of this work provide a good method for the treatment of organic wastewater with high performance.


Sign in / Sign up

Export Citation Format

Share Document