Micellar Catalysis of Organic-Reactions. XXI. A Comparison of the Catalytic Activity of Micelles of Cetyltrimethylammonium Bromide and Sulfate on Ester, Amide and Carbamate Hydrolyses

1988 ◽  
Vol 41 (3) ◽  
pp. 325
Author(s):  
TJ Broxton ◽  
JR Christie ◽  
SM Mannas

The basic hydrolyses of phenyl acetate, N,4-dimethyl-N-(3′- nitrophenyl ) benzamide , methyl N-methyl-N-(4′-nitrophenyl) carbamate and methyl N-(3′,5′-dinitrophenyl)-N-methylcarbamate have been studied in cationic micelles of cetyltrimethylammonium bromide (ctab) and sulfate (ctas). Hydrolysis of phenyl acetate and the 4′-nitro carbamate, which involve rate-determining hydroxide attack, exhibit weak catalysis by both micelles, and the observed rates in each micelle are similar. The hydrolysis of the benzamide and the 3′,5′-dinitro carbamate, which involve rate determining C-N bond breaking, show larger catalysis, and, furthermore, micelles of ctab are more effective than micelles of ctas. The observed rates can be explained by the pseudo-phase kinetic model. For reactions involving rate-determining hydroxide attack, the calculated second-order rate constants in micelles of ctab and ctas are similar and much less than those for reaction in water. For reactions involving rate-determining C-N bond breaking the calculated second-order rate constants in micelles of ctab are greater than in micelles of ctas, and similar to those for reaction in water.

1994 ◽  
Vol 30 (3) ◽  
pp. 53-61 ◽  
Author(s):  
Harro M. Heilmann ◽  
Michael K. Stenstrom ◽  
Rolf P. X. Hesselmann ◽  
Udo Wiesmann

In order to get basic data for the design of a novel treatment scheme for high explosives we investigated the kinetics for the aqueous alkaline hydrolysis of 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX) and the temperature dependence of the rate constants. We used an HPLC procedure for the analysis of HMX. All experimental data could be fit accurately to a pseudo first-order rate equation and subsequent calculation of second-order rate constants was also precise. Temperature dependence could be modeled with the Arrhenius equation. An increase of 10°C led to an average increase in the second-order rate constants by the 3.16 fold. The activation energy of the second-order reaction was determined to be 111.9 ±0.76 kJ·moJ‒1. We found the alkaline hydrolysis to be rapid (less than 2.5% of the initial HMX-concentration left after 100 minutes) at base concentrations of 23 mmol oH‒/L and elevated temperatures between 60 and 80°C.


1984 ◽  
Vol 62 (11) ◽  
pp. 2330-2336 ◽  
Author(s):  
Alain Brembilla ◽  
Denis Roizard ◽  
Jacqueline Schoenleber ◽  
Pierre Lochon

The kinetic study of the hydrolysis of p-nitrophenylacetate in the presence of primary thiols indicates the thiolate anion as the sole catalytic species. Comparison of the true second order rate constants (kRS−) reveals that purely aliphatic primary thiols behave differently from aromatic α-substituted primary thiols. In the latter group a correlation can be established between the true second order rate constants and the pKSH values by means of the Brönsted equation log kRS− = βpKSH + C, with β equal to 0.40 and C equal to −0.85.


1986 ◽  
Vol 64 (6) ◽  
pp. 1179-1183 ◽  
Author(s):  
Clifford A. Bunton ◽  
Angela Cuenca

Cationic micelles of cetyltrimethylammonium chloride and bromide (CTACl and CTABr) speed attack of water upon the 2,2′,4,4′,4″-pentamethoxytrityl cation by a factor of ca. 5. The first-order rate constant in water is 5.51 s−1 at 25.0 °C. Anionic micelles of sodium dodecyl sulfate (SDS) have little effect on this reaction, but they strongly inhibit attack of OH−. In water, second-order rate constants for attack of OH−, CN−, and N3− are, respectively, 235, 177, and 2.8 × 105 M−1 s−1. Rate constants of reaction in CTACl go through maxima with increasing [surfactant] and analysis of the data shows that second-order rate constants at the micellar surface are similar to those in water.


1983 ◽  
Vol 36 (11) ◽  
pp. 2203 ◽  
Author(s):  
TJ Broxton

Rate constants for the basic hydrolysis of methyl, ethyl and phenyl N-aryl-N-methylcarbamates in the presence and absence of micelles of cetyltrimethylammonium bromide are reported. Hammett plots for the methyl and ethyl carbamates were curved, and this is explained by consideration of the competition between C-N and C-OR bond breaking for decomposition of the tetrahedral intermediate. In one case (p-nitro-substituted), rate-determining formation of the tetrahedral intermediate is suggested, whereas for other compounds rate-determining C-N bond breaking or C-OR bond breaking is proposed. Micellar catalysis for each of the reactions is reported, and large catalysis (× 50) was observed for compounds where C-N bond breaking was kinetically significant. This is compared with results in the literature for amide and ester hydrolysis. Whereas, for ester hydrolysis, loss of alkoxide ion from the tetrahedral intermediate is favoured over loss of hydroxide ion, in carbamate hydrolysis, loss of hydroxide ion is favoured. A possible reason for this reversal of nucleofugicity of OH- and OR- is proposed.


1988 ◽  
Vol 60 (02) ◽  
pp. 247-250 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

SummaryRecombinant chimaeric molecules between tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA) or two chain urokinase-type plasminogen activator (tcu-PA) have intact enzymatic properties of scu-PA or tcu-PA towards natural and synthetic substrates (Nelles et al., J Biol Chem 1987; 262: 10855-10862). In the present study, we have compared the reactivity with inhibitors of both the single chain and two chain variants of recombinant u-PA and two recombinant chimaeric molecules between t-PA and scu-PA (t-PA/u-PA-s: amino acids 1-263 of t-PA and 144-411 of u-PA; t-PA/u-PA-e: amino acids 1-274 of t-PA and 138-411 of u-PA). Incubation with human plasma in the absence of a fibrin clot for 3 h at 37° C at equipotent concentrations (50% clot lysis in 2 h), resulted in significant fibrinogen breakdown (to about 40% of the normal value) for all two chain molecules, but not for their single chain counterparts. Preincubation of the plasminogen activators with plasma for 3 h at 37° C, resulted in complete inhibition of the fibrinolytic potency of the two chain molecules but did not alter the potency of the single chain molecules. Inhibition of the two chain molecules occurred with a t½ of approximately 45 min. The two chain variants were inhibited by the synthetic urokinase inhibitor Glu-Gly-Arg-CH2CCl with apparent second-order rate constants of 8,000-10,000 M−1s−1, by purified α2-antiplasmin with second-order rate constants of about 300 M−1s−1, and by plasminogen activator inhibitor-1 (PAI-1) with second-order rate constants of approximately 2 × 107 M−1s−1.It is concluded that the reactivity of single chain and two chain forms of t-PA/u-PA chimaers with inhibitors is very similar to that of the single and two chain forms of intact u-PA.


1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


1987 ◽  
Vol 42 (9) ◽  
pp. 1009-1013 ◽  
Author(s):  
P. Targowski ◽  
B. Ziętek ◽  
A. Bączyński

Cyclooctatetraene (COT) as a quencher of fluorescence of a series of Rhodamine solutions was studied. The second order rate constants for the quenching process of Rhodamine 110, Rhodamine 19 pchl., Rhodamine 6G pchl., Rhodamine 6G, Tetramethylrhodamine, Rhodamine B and Rhodamine 3B pchl. are given. It was found that COT enhances rather intersystem crossing than internal conversion.


2000 ◽  
Vol 2000 (2) ◽  
pp. 62-63
Author(s):  
Sergio Alunni ◽  
Arianna Rocchi

Second order rate constants kE M−1 s−1 for the β-elimination reaction from N-[2-( p-nitrophenyl)ethyl]quinuclidinium and 2-( p-nitrophenyl)ethyl bromide induced by amines of different structure in dimethylsulfoxide at 50 °C have been measured. Application of the Brønsted equation shows a similar behaviour of the two substrates, with values of β = 0.649 and 0.584 respectively.


Sign in / Sign up

Export Citation Format

Share Document