Improved nitrogen supply to cereals in Central Queensland following short legume leys

1997 ◽  
Vol 37 (3) ◽  
pp. 359 ◽  
Author(s):  
R. D. Armstrong ◽  
K. Walsh ◽  
K. J. McCosker ◽  
G. R. Millar ◽  
M. E. Probert ◽  
...  

Summary. The growth and ability of 12 summer-growing annual and perennial legumes to fix nitrogen and the response of a subsequent wheat crop was examined in a field trial on a deep cracking clay soil in the Central Highlands of Queensland. Twelve legumes [Lablab purpureus cv. Highworth, Vigna radiata cv. Satin, Macroptilium atropurpureum cv. Siratro, Medicago sativa cv. Trifecta, Vigna trilobata (CPI 13671), Macroptilium bracteatum (CPI 27404), Glycine latifolia (CQ 3368), Desmanthus virgatus cv. Marc, Desmanthus virgatus cv. Bayamo, Stylosanthes sp. aff scabra (104710), Clitoria ternatea cv. Milgarra, Cajanus cajan cv. Quest)] and grain sorghum (Sorghum bicolor cv. Tulloch) as a non-legume control were established in November 1994 and their growth monitored until March 1995. The legumes averaged greater than 5 t/ha dry matter production and 77 kg N/ha (above-ground only). Dry matter production ranged from less than 2 t/ha for G. latifolia and M. sativa to greater than 9 t/ha for D. virgatus cv. Bayamo and C. cajan. Annual legumes initially had much higher relative growth rates than the perennial legumes but they rapidily exhausted all the plant available water content of the soil thus allowing the well-established perennials to eventually match this production. The proportion of plant nitrogen (above ground) derived from N2 fixation was generally low, reflecting high soil NO3, but varied widely between species ranging from less than 20% for D. virgatus cv. Marc and G. latifolia to over 45% for C. ternatea, S. scabra and V. trilobata. The quantity of nitrogen derived from fixation was correlated with above-ground dry matter and nitrogen content. There was a significant (P<0.05) growth response by wheat following legumes compared with that following sorghum in the increasing order V. radiata = M. atropurpureum = L. purpureus > C. cajan = M. sativa = V. trilobata = M. bracteatum = G. latifolia > S. scabra = D. virgatus = C. ternatea. Previous legume growth had no significant (P>0.05) effect on yield or nitrogen concentration in a second ‘plant-back’ crop (sorghum). It was concluded that a wide range of pasture-ley legumes have the potential to improve cereal crop production in this region.

1984 ◽  
Vol 102 (2) ◽  
pp. 371-382 ◽  
Author(s):  
A. H. Weir ◽  
P. L. Bragg ◽  
J. R. Porter ◽  
J. H. Rayner

SummaryA whole crop computer simulation model of winter wheat has been written in FORTRAN and used to simulate the growth of September- and October-sown crops of Hustler wheat at Rothamsted for the years 1978–9, 1979–80 and 1980–1. Results of the simulations, which are for crops with adequate water and nutrients, are compared with observations from experiments at Rothamsted. The model uses daily maximum and minimum temperatures and daylength to calculate the dates of emergence, double ridge, anthesis and maturity of the crops and the growth and senescence of tillers and leaves. In the simulations, the canopy intercepts daily radiation and produces dry matter that is partitioned between roots, shoots, leaves, ears and grain. Partial simulations, using observed LAI values, produced dry matter in close agreement with observations of late-sown crops, but consistently overestimated the total dry-matter production of the early-sown crops. Full simulation described satisfactorily the average difference in dry-matter production to be expected with changes in time of sowing, but did not give as close correspondence for individual crops. A grain growth submodel, that linked maximum grain weight to average temperatures during the grain growth period, correctly simulated the observed growth of individual grains in the 1981 crop. The benefits to be obtained by combining whole crop modelling with detailed crop observations are discussed.


1969 ◽  
Vol 86 (1-2) ◽  
pp. 15-26
Author(s):  
Héber Irizarry ◽  
Ricardo Goenaga ◽  
Ulises Chardón

A 40-month experiment was conducted to re-evaluate the nitrogen fertilization recommendation for banana grown on a clayey, mixed isohyperthermic Aquic Haplohumults under rainfed conditions. Five nitrogen rates (0, 85,170, 255 and 340 kg/ha/crop) were arranged in a randomized compíete block design with three replications. The nitrogen treatments were applied with 24.4 kg/ha of phosphorus, 651,7 kg/ha of potassium, and a minor element mixture containing 22.7 kg/t of fertilizer. Treatments were applied every three months. Applications of magnesium alone were also applied between treatments at the rate of 55 kg/ha in the plant crop (PC) and 110 kg/ha in each of two ratoon crops (R1, R2). During growth and development of three crops we collected data of plant and bunch traits, green and oven-dry biomass weight, nitrogen concentration in various plant organs, and bunch marketable weight at harvest. Results showed that the rate x crop interaction was highly significant (P < 0,01) for total nitrogen uptake, and for nitrogen concentration in the leaf-lamina four months before bunch harvest, and significant (P < 0.05) for total dry matter production. Total nitrogen uptake, leaf nitrogen concentration, and total dry matter production linearly increased with increments in the nitrogen rates. Overall total nitrogen uptake and total dry matter production were always significantly higher in the R2 than in the PC, Regardless of the nitrogen rate, a significantly higher nutrient concentration was always found in the leaf-lamina of the R1 plants than in either the PC or the R2 plants. Crop had no significant effect on yield, but nitrogen rate significantly influenced yield. A maximum yield of 57,060 kg/ ha/crop was obtained with an estimated nitrogen application of 240 kg/ha. This amount corresponded to a leaf nitrogen concentration of between 2.75 and 2.85 g/kg. Since the maximum yield for all crops was obtained with a nitrogen application of only 240 kg/ha, we concluded that the linear response to fertilization in excess of this amount for total nitrogen uptake, nutrient concentration, and total dry matter production may be attributed to luxury consumption of nitrogen.


2015 ◽  
Vol 154 (6) ◽  
pp. 1090-1101 ◽  
Author(s):  
A. M. RATJEN ◽  
H. KAGE

SUMMARYThree different explanatory indicators for reduced light use efficiency (LUE) under limited nitrogen (N) supply were evaluated. The indicators can be used to adapt dry matter production of crop simulators to N-limited growth conditions. The first indicator, nitrogen factor (NFAC), originates from the CERES-Wheat model and calculates the critical N concentration of the shoot as a function of phenological development. The second indicator, N nutrition index (NNI), calculates a critical N concentration as a function of shoot dry matter. The third indicator, specific leaf nitrogen (SLN) index (SLNI), has been newly developed. It compares the actual SLN with the maximum SLN (SLNmax). The latter is calculated as a function of the green area index (GAI). The comparison was based on growth curves and fitted to empirical data, and was carried out independently from a dynamic crop model. The data set included four growing seasons (2004–2006, 2012) in Northern Germany and seven modern bread wheat cultivars with varying N fertilization levels (0–320 kg N/ha). The influence of N shortage on LUE was evaluated from the beginning of stem elongation until flowering. With the exception of 2005, the highest productivity was observed for the highest N level. A moderate N shortage primarily reduced GAI and therefore light interception, while LUE remained stable under moderate N shortage. The relative LUE (rLUE) of a specific day was defined as the ratio of actual to maximal LUE. None of the indicators was proportional to rLUE, but the relationships were described well by quadratic plateau curves. The correlation between simulated and measured rLUE was significant for all explanatory indicators, but different in terms of mean absolute error and coefficient of determination (R2). The performance of SLNI and NNI was similar, but the goodness of prediction was much lower for NFAC. Compared with NNI and NFAC, SLNI corresponded to leaf N and was therefore sensitive to N translocation from leaves to growing grains during the reproductive stage. For this reason, SLNI may have the potential to improve simulation of dry matter production in wheat crop simulators.


1980 ◽  
Vol 20 (105) ◽  
pp. 439 ◽  
Author(s):  
RL Burt ◽  
DF Sinclair ◽  
P Harrison ◽  
BC Pengelly ◽  
WT Williams

Twenty Urochloa accessions, representing four species, were grown as small swards for a 2 to 4 year period at five sites. The sites cover a wide range of tropical environments. Dry matter production and 'secondary attributes' were observed at strategically important times at the various sites. Various forms of analysis were applied to the resulting information and species, or species forms, of particular agronomic interest were delineated. Two accessions appear to have outstanding potential. The implications of the methods used and results obtained are discussed in relation to plant introduction and plant evaluation programs, and the high potential value of the genus noted.


2006 ◽  
Vol 86 (3) ◽  
pp. 865-874 ◽  
Author(s):  
Anthony R. Szumigalski ◽  
Rene C. Van Acker

Enhanced crop or cultivar diversity within annual cropping systems could provide important ecological and agronomic benefits. The agronomic effects of annual plant diversity from mixtures of crop species and barley (Hordeum vulgare L.) cultivar types were compared using richness levels of 1, 2, 5 or 10 randomly selected taxa in a greenhouse experiment. Increasing crop richness increased overall crop dry matter production, production stability (i.e., decreased CV for dry matter production) and weed suppression. These agronomic variables tended to level off after a richness of five to six crop species, suggesting that further increases in crop diversity are redundant. Increasing barley cultivar richness increased crop production in one of two experimental runs, but no effects were observed for weed suppression. Increased light interception related to greater plant canopy height variation in diverse mixtures of species could have contributed to increased productivity in the crop richness experiment. The results of this study suggest that the ecological functions of diversity provide productivity, yield stability and weed suppression benefits for mixtures of crop species, and even perhaps for mixtures of cultivars within a given crop species. Key words: Diversity (crop), suppression (weed), stability (yield), intercropping, cultivars (barley), oat (wild)


2020 ◽  
Vol 10 (7) ◽  
pp. 708
Author(s):  
Loubna Azariz ◽  
Mohamed Fekhaoui ◽  
Souad Elblidi ◽  
Ahmed Yahyaoui

the increasing number of cases of soil contamination by trace elements have affected crop production, and represents a risk threatening the quality of our food products. Some of these contaminants, such as trivalent chromium Cr (NO<sub>3</sub>)<sub>3,</sub> which is similar to micronutrients, can, therefore, be absorbed by plants and whose phytotoxicity has long been considered negligible, and largely underestimated. The purpose of this work was to study the transfer of trivalent chromium from nutrient solution to green beans <em>Phaseolus vulgaris L</em> grown on bioponics; the contamination responses were determined in terms of growth parameters, yield, and dry matter production; at various concentrations (5, 10 and 20 ppm). Chromium trivalent effects have also been studied in tissues plant. Results showed that the absorption of trivalent chromium from the nutrient solution and its translocation to the aerial tissues plants had no adverse effects on growth parameters, and also on beans yield. Results also showed that chromium accumulates in roots rather than in the other tissues, and did not reduce the dry matter production, in terms of translocation and bioconcentration. The transfer factor is low and green beans cannot be defined as a hyperaccumulator of chromium.


Soil Research ◽  
1992 ◽  
Vol 30 (1) ◽  
pp. 45 ◽  
Author(s):  
RF Brennan

The effectiveness of zinc fertilizer (Zn) on a wide range of Australian soils was examined using subterranean clover (Trifolium subterranean cv. Nungarin) as a test crop in a glasshouse experiment. The initial effectiveness (IE) of zinc fertilizer as measured by dry matter production (DMP), and zinc content (uptake) of subterranean clover (clover) was found to vary markedly among the soil types. No simple linear retationship between the initial effectiveness measured by either dry matter production or uptake and any one soil property was found. IE values were found to be related to the pH (1 : 5 soil :water) (pHw) and the level of DTPA soil extractable zinc measured in the unfertilized soil (Zno). IE based on Zn uptake by clover tops was also related to the organic carbon (OC) (%) content of the soils. The model for IE measured by DMP in a stepwise linear regression was IEDMP = 2.682 - 0.107 pH,-4.852 Zn, (n = 45; r2 = 0-86). IE based on Zn uptake by clover tops was: IEuptake = 10.842 - 0.882 pH, - 0.310 OC (%) - 1.349 Zn, (n = 54; R2 = 0.85). The IE of zinc fertilizer measured by DTPA soil extraction (IEDTPA-zn) was also found to vary markedly among soil types. The level of zinc extracted by DTPA after the addition of Zn fertilizer was found to be affected by clay (%), organic carbon (%) and calcium carbonate (CaCO3) (%) content of the range of Australian soils. This relationship could be described by: IEDTPA - Zn = 0.178 + 0.0.002 Clay (%) + 0.014 OC (%) + 0.018 CaCO3 (%) (N = 54, r2 = 0.84)


Sign in / Sign up

Export Citation Format

Share Document