Interaction of Meloidogyne hapla and Verticillium dahliae, and the chemical control of wilt in strawberry

1970 ◽  
Vol 10 (45) ◽  
pp. 493 ◽  
Author(s):  
JW Meagher ◽  
PT Jenkins

In a field experiment with strawberries, pre-plant treatments with broad-spectrum fumigants methyl bromide-chloropicrin (450 kg/ha) or methyl isothiocyanate-dichloropropene (500 l/ha) (and 300 l/ha) controlled wilt caused by Verticillium dahliae Kleb and resulted in increased yields. Soil fumigation with the nematicide ethylene dibromidz (105 l/ha) also improved yields. It controlled the root-knot nematode (Meloidogyne hapla Chitwood), delayed the onset of wilt symptoms and reduced the severity of disease. This indicated a nematode-fungus interaction and is the first report of a Meloidogyne-Verticillium interaction in strawberry.

HortScience ◽  
1997 ◽  
Vol 32 (7) ◽  
pp. 1208-1211 ◽  
Author(s):  
Salvadore J. Locascio ◽  
James P. Gilreath ◽  
D.W. Dickson ◽  
Thomas A. Kucharek ◽  
J.P. Jones ◽  
...  

Tomato (Lycopersicon esculentum Mill.) was grown to evaluate various chemicals as possible alternatives to methyl bromide soil fumigation. Due to a combination of weeds, nematodes, and soil fungi, the use of a broad-spectrum fumigant has been essential for economical tomato production in Florida. Methyl bromide (MBr) and combinations of MBr with chloropicrin (Pic) are the fumigants of choice for most growers using polyethylene mulch culture. In 1991, MBr was allegedly associated with stratospheric ozone depletion. The U.S. Environmental Protection Agency has since mandated a phaseout of MBr for soil fumigation in the United States by the year 2001. At three locations in Florida, alternative soil fumigants were evaluated, including soil injected 98% MBr—2% Pic at 450 kg·ha-1, 67% MBr—33% Pic (390 kg·ha-1), Pic (390 kg·ha-1), dichloropropene + 17% Pic (1,3-D + Pic) at 327 L·ha-1, and metam-sodium (935 L·ha-1). Also, metam-sodium and tetrathiocarbonate (1870 L·ha-1) were applied by drip irrigation. Dazomet (450 kg·ha-1) was surface applied and soil incorporated. Pebulate (4.5 kg·ha-1) was soil incorporated with some treatments. Pic and 1,3-D + Pic treatments provided good to moderate control of nematodes and soil fungi except in one of the six studies, in which nematode control with 1,3-D was moderate to poor. Nutsedge densities were suppressed by addition of pebulate. Tomato fruit yields with 1,3-D + Pic + pebulate and with Pic + pebulate at the three sites ranged from 85% to 114%, 60% to 95%, and l01% to 119%, respectively, of that obtained with MBr treatments. Pest control and crop yield were lower with treatments other than the above pebulate-containing or MBr-containing treatments. These studies indicate that no one alternative pesticide can provide the consistent broad-spectrum control provided by MBr. Chemical names used: trichloronitromethane (chloropicrin); 1,3-dichloropropene (1,3-D); sodium N-methyldithiocarbamate (metam-sodium); sodium tetrathiocarbonate (tetrathiocarbonate); 3,5-dimethyl-(2H)-tetrahydro-l,3,5-thiadiazine-2-thione (dazomet); S-propyl butyl(ethyl)thiocarbamate (pebulate).


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1707-1715 ◽  
Author(s):  
Husein A. Ajwa ◽  
Thomas Trout

Strawberry (Fragaria ×ananassa Duchesne) is a high-value cash crop that benefits from preplant soil fumigation with methyl bromide (MB) and chloropicrin (CP). Methyl bromide will be banned in the U.S. and other developed countries by 2005 for most uses. Potential alternative chemicals to replace methyl bromide for soil fumigation include CP, 1,3-dichloropropene (1,3-D), and methyl isothiocyanate (MITC) generators such as metam sodium (MS). Commercial formulations of these fumigants applied singly and in combination through drip irrigation systems were evaluated at two sites for three consecutive growing seasons as alternatives to MB:CP fumigation for strawberry production. A mixture of 1,3-D and CP was shank injected as Telone C35 (62% 1,3-D and 35% CP) at 374 kg·ha-1. An emulsifiable concentrate (EC) formulation of 1,3-D and CP was applied as InLine (60% 1,3-D and 32% CP) at 236 and 393 L·ha-1 through drip irrigation systems in three amounts of irrigation water (26, 43, and 61 L·m-2). Chloropicrin (CP EC, 96%) was drip applied singly at 130 or 200 L·ha-1. Metam sodium was applied singly as Vapam HL in three amounts of water and in combination with InLine and CP EC. Strawberry growth, fruit yields, disease pressure, and weed biomass were compared to an untreated control and shank injection with MB:CP mixture (67:33) at 425 kg·ha-1. For soils high in pathogen populations, fruit yield from the untreated plots was 34% to 50% relative to the MB:CP treatment. The greatest (95% to 110%) yields relative to MB:CP were in the high rates of the InLine treatments. Yields from simultaneous drip fumigation with a combination of Vapam HL and InLine or CP EC were less (67% to 79%) than yields from shank fumigation with MB:CP due to 1,3-D and CP hydrolysis reactions with Vapam HL or the generated MITC in the irrigation water that reduced the efficacy of these combinations to control soilborne pathogens. Application of reduced rates of InLine or CP EC followed 6 days later with reduced rates of Vapam HL controlled soil borne pathogens and weeds and produced the greatest fruit yield relative to all treatments. Chemical names used: 1,3-dichloropropene (1,3-D); methyl bromide (MB); trichloronitromethane (chloropicrin, CP); sodium methyldithiocarbamate (metam sodium); methyl isothiocyanate (MITC).


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 136-138 ◽  
Author(s):  
James F. Hancock ◽  
Peter W. Callow ◽  
Sedat Serçe ◽  
Annemiek C. Schilder

The performance of four California and 11 eastern cultivars of Fragaria×ananassa Duchesne in Lamarck, and 12 elite F1 hybrids of Fragaria×ananassa with F. virginiana Miller in their immediate background was evaluated in a producer's field with and without methyl bromide-chloropicrin fumigation. Averaged across all genotypes, plants in nonfumigated soils had 43% fewer runners, 18% smaller fruit, and 46% lower yields than did plants on fumigated soil. They also had an average of 27% fewer crowns, 49% more root discoloration, significantly fewer fine roots, and showed symptoms of the black root rot syndrome. The most commonly isolated pathogens from discolored roots were Pythium sp., Rhizoctonia sp., Idriella lunata P.E. Nelson & K. Wilh., and the root-knot nematode (Meloidogyne hapla Chitwood). The performance of all genotypes was enhanced by fumigation, although the F. virginiana hybrids performed comparatively better than the other cultivars on nonfumigated soils.


1964 ◽  
Vol 44 (5) ◽  
pp. 466-470 ◽  
Author(s):  
C. D. McKeen ◽  
R. M. Sayre

Fumigation of greenhouse soils with Vorlex and Morton Chemical Company proprietary chemical EP-201 gave excellent control of root-knot nematode and reduced the incidence of Verticillium wilt to a low level. Both fumigants gave highly significant increases in yield of fruit. From a soil-suspension plating method it was found that the survival of Fusarium spp. could be used as an index of the destruction of Verticillium dahliae in fumigated soils.


Author(s):  
A.A. Vypritskaya ◽  
◽  
A.A. Kuznetsov

Data on the prevalence in the Tambov region of the pathogen Verticillium dahliae Kleb (Verticillium dahliae) and the phytotoxicity of filtrates of the pathogen isolated from sunflower and a wild weed of the family of compound flowers (Xantium strumarium) are presented.


Crop Science ◽  
1969 ◽  
Vol 9 (5) ◽  
pp. 624-627 ◽  
Author(s):  
O. J. Hunt ◽  
R. N. Peaden ◽  
L. R. Faulkner ◽  
G. D. Griffin ◽  
H. J. Jensen

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 722
Author(s):  
Renata Dobosz ◽  
Roman Krawczyk

The northern root-knot nematode, Meloidogyne hapla, is a major pest of many crop species. The objective of the study was to determine how M. hapla population dynamics is affected by two precrops, i.e., Trifolium pratense and Medicago sativa, in three crop durations: one, two and three years of continuous cultivation. Moreover, we set ourselves the task of evaluating the effect of the legume precrop soil on the growth of the succeeding tomato plant (Solanum lycopersicum) and on the nematode population. The experiment was performed outdoors in pots with naturally infected soil. Both precrop species investigated were found to modify the J2 nematode population density in the soil. The galls and nematode females with egg masses were observed on the roots of both studied plant species at the end of each growing season. They appeared to be more abundant on the red clover roots than on those of the alfalfa. The obtained data indicate that the spring soil sampling is more appropriate for the estimation of the M. hapla population density in the red clover precrop soil. The legume precrop soil had a limiting effect on tomato growth and fruit yield. The nematode population negatively influenced tomato growth. The experiment revealed that tomato plants could be planted in alfalfa precrop soil following at least three years of continuous alfalfa cultivation. The same cannot be said of the cultivation of red clover as a precrop for tomatoes.


2010 ◽  
Vol 83 (3) ◽  
pp. 217-221 ◽  
Author(s):  
Ondřej Douda ◽  
Miloslav Zouhar ◽  
Jana Mazáková ◽  
Eva Nováková ◽  
Roman Pavela

2017 ◽  
Vol 39 (4) ◽  
pp. 514-526 ◽  
Author(s):  
Sheau-Fang Hwang ◽  
Stephen E. Strelkov ◽  
Hafiz U. Ahmed ◽  
Qixing Zhou ◽  
Heting Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document